

# LAND CLASSIFICATION FOR AGRICULTURE REPORT

# Bonnyknox Solar Farm, Arbroath

# **Proposed Development**

May 2025

Prepared by: Patrick Stephenson BSc (Hons) Agriculture

| Coi        | ntents                                 | Page No. |
|------------|----------------------------------------|----------|
| 1.0        | Introduction                           | 3        |
|            | 1.1 Method                             | 3        |
|            | 1.2 Secondary Research                 | 4        |
|            | 1.3 Planning Policy                    | 4        |
| 2.0        | Location                               | 5        |
|            | 2.1 Site Characteristics               | 5        |
|            | 2.2 Climate and Relief                 | 5        |
| 3.0<br>4.0 | Land Use<br>Land Quality               | 6<br>6   |
|            | 4.1 Agricultural Land Classification   | 7        |
| 5.0        | Published Survey Information           | 8        |
| 6.0        | Survey Results                         | 8        |
| 7.0        | Conclusion                             | 9        |
|            | Appendix 1- Development Site Location  | 11       |
|            | Appendix 2 – Detailed ALC Map          | 12       |
|            | Appendix 3 - Sample Points             | 13       |
|            | Appendix 4 - Sample Point Descriptions | 14       |
|            | Appendix 5 – Soil Pit Location         | 36       |
|            | Appendix 6 – Soil Pit Details          | 37       |
|            | Appendix 7 – Soil Pit Description      | 39       |
|            | Appendix 8 – Laboratory Results        | 49       |

#### **1.0 Introduction**

Patrick Stephenson Limited was approached by Arthian on behalf of Renewable Energy Systems (RES), to undertake a detailed Land Classification for Agriculture (LCA) Survey of the agricultural land quality at Bonnyknox Farm, Arbroath. (Grid Ref NO 5708 4067)

Patrick Stephenson has a degree in Agriculture from Newcastle University, has undertaken the Ministry of Agriculture, Fisheries and Food (MAFF)<sup>1</sup> Agricultural Soil and Land Classification course and has the passed the BASIS Soil and Water exam. He has over 30 years' experience in Environmental Impact Assessments and LCA studies.

#### 1.1 Method

The method used to create this report was primary research in the form of a detailed-on site ALC survey, following the guidelines and criteria as stated in the documents listed below.

- The Revised Guidelines and Criteria for Grading the Quality of Agricultural Land DEFRA
   1988
- The Macaulay Institute for Soil Research Aberdeen. 1984 Soil Survey of Scotland outlined the method and organisation for the grading of land<sup>2</sup>.
- "Specifications for Topsoil" British Standards Institute

The survey work was carried out on a much larger parcel of land covering approximately 140 ha in Appendix 3 and 4. Soil was examined using a one metre handheld Dutch Auger at one hundred metre intervals and GPS located. The soil profile at each sample location was described using the *Soil Survey Field Handbook: Describing and Sampling Soil Profiles* (Ed. J.M. Hodgson, Cranfield University, 1997)<sup>2</sup>. *The Macaulay Institute for Soil Research Aberdeen. 1984 Soil Survey of Scotland* outlined the method and organisation for the grading of the land. Representative soil samples were taken from the soil pits to confirm soil type and the physical and chemical characteristics (Appendix 8). Additional boring and soil pits were dug to confirm soil boundaries.

<sup>&</sup>lt;sup>1</sup> The Ministry of Agriculture, Fisheries and Food (MAFF) was incorporated within the Department for Environment, Food and Rural Affairs (Defra) in June 2001

<sup>&</sup>lt;sup>2</sup> Soil Survey Technical Monograph No 5 Soil Survey Handbook Describing and Sampling Soil Profiles J. M Hodgson 1974 1997

#### 1.2 Secondary Research

Desktop research was conducted alongside the fieldwork as described in the method statement, to establish if the Proposed Development would have an effect on Prime Agricultural Land (PAL), which is defined by Macaulay as Grades 1, 2, 3 Division 1. The following sources were used to help in compiling the report.

- "The Soils Around Perth, Arbroath and Dundee" Sheet 49. D Laing 1976.
- Goole viewed on Google Maps (Tele Atlas 2012)
- Natural England MAGIC web site (<a href="http://magic.defra.gov.uk/website/magic">http://magic.defra.gov.uk/website/magic</a>)
- Handbook Soil Survey of Scotland. Book 5.
- The Ordnance Survey Explorer Map Series 1:25,000 (291))
- The British Geological Survey Digital Mapping (49)
- Land Capability for Agriculture in Scotland.
- National Soil Map of Scotland.
- Land Character Assessment 2019.

#### **1.3 Planning Policy**

Current planning policy is found in the National Planning Framework 4 (NPF4) (published 13<sup>th</sup> February 2023).

#### In Policy 5

- a) Development proposals will only be supported if they are designed and constructed:
- i. In accordance with the mitigation hierarchy by first avoiding and then minimising the amount of disturbance to soils on undeveloped land; and
- ii. In a manner that protects soil from damage including from compaction and erosion, and that minimises soil sealing.
- b) Development proposals on prime agricultural land, or land of lesser quality that is culturally or locally important for primary use, as identified by the LDP, will only be supported where it is for:
- i. Essential infrastructure and there is a specific locational need and no other suitable site;

ii. Small-scale development directly linked to a rural business, farm or croft or for essential workers for the rural business to be able to live onsite.

iii. The development of production and processing facilities associated with the land produce where no other local site is suitable.

iv. The generation of energy from renewable sources or the extraction of minerals and there is secure provision for restoration; and

In all the above exceptions, the layout and design of the proposal minimises the amount of protected land that is required.

#### 2.0 Location

"The Site" is located North of Bonnyton Smiddy, West of Kelly Moor plantation and South of Guynd Den. "The Site" is centred on Ordnance Survey (OS) grid reference NO 5708 4067 and covers approximately 95.45 Ha. Appendix 1 shows the Proposed Development and Site location.

#### 2.1 Site characteristics

The topographical survey data shows that the site slopes from 123 metres above Ordnance Datum (mAOD) in the northwest corner to 92m AOD in the east of the site. The southern section is split by the Rottenraw Burn with steep sided slopes. The geology of the area is described in the *Soils of Scotland* as having parent material of either coastal raised beach deposits, mainly coarse sands and gravels derived from sediments and lavas of Old Red Sandstone age or water-modified layer, generally <60cm thick, over till derived from sediments (mainly sandstones, flags and mudstones) of Lower Old Red Sandstone age with some Dalradian Schist erratic's. The area along Rottenraw Burn is described as recent riverine and lacustrine alluvial deposits. The described soil types are, Balrownie brown soils imperfectly drained, Panbride freely drained mineral podzols, and alluvial soils by the Rottenraw Burn. "The British Geological" survey describes the area as Glacial Meltwater and Till.

#### 2.2 Climate and Relief

Climate has a major, and in places overriding, influence on land quality affecting both the range of potential agricultural uses and the cost and level of production.

There is published agro-climatic data for Scotland provided by the Meteorological Office. Data for the area as used by The Macauley Institute provided the following data.

**Table 1 - Agro-Climatic Data** 

| Grid Reference                       | NO 5708 4067 |
|--------------------------------------|--------------|
|                                      |              |
| Altitude (ALT)                       | 102 M        |
|                                      | 670          |
| Average Annual Rainfall (AAR)        | 670 mm       |
|                                      |              |
| Accumulated temperature above 5-6 C° | 2259         |
| Lower Quartile Value                 | 1126         |
|                                      |              |
| Growing Days                         | 244          |
| Moisture Deficit Wheat               | 120,000      |
| Moisture Deficit Wheat               | 120mm        |
| Average Moisture Deficit Potato      | 98mm         |
| Average initisture Deficit Potato    | 3011111      |

The main parameters used in assessing the climatic limitation are average annual rainfall (AAR), as a measure of overall wetness; and accumulated temperature, as a measure of the relative warmth of a locality. The surveyed site would have restrictions and could not be classified as Grade 1.

Most of the site is not within a flood risk area however, Rottenraw Burn will have areas of localised flooding.

#### 3.0 Land Use

The current cropping is Winter Oil Seed Rape, Winter Wheat, Spring Barley, Potatoes and Permanent Grass.

#### 4.0 Land Quality

The Macaulay Institute for Soil Research Aberdeen. 1984 Soil Survey of Scotland outlined the method and organisation for the grading of land. This amalgamated the data available and completed the survey of all land in Scotland. The Lowland productive areas had largely been covered at a scale of 1:63 360 maps. These maps were made by taking samples of between 5 and 15 per 100 hectares and were used to comply the Land Use Capability maps and soil formations. The 1984 amalgamations produced an ALC system classifies land into 1 through to 7 classes, with Grade 3 and 4 having 2 divisions and Grades 5 and 6 three divisions. Prime Agricultural Land (PAL) is classed as land in Grades 1, 2, and 3 Division 1. The 1984 survey provides good guidance of the likelihood of finding PAL, RES used this analysis of the area provided by the James Hutton Institute data to select a site

where the soil was not Grade 1 or 2 and hence the location of this proposal. Further details regarding site selection can be found in the Design and Access Statement.

In line with the planning guidance a detailed survey was undertaken which sampled 1 ha grid with one sample point per hectare. This highlighted that the range of Grades was 2 to 4which is in keeping with the Macaulay soil survey of Scotland.

PAL is based on the long-term physical limitations of land for agricultural use. Factors affecting the Grade are climate, site and soil characteristics.

- Climate: temperature and rainfall; aspects, exposure and frost risk
- **Site:** gradient, micro relief and flood risk
- Soil: texture, structure, depth and stoniness; chemical properties which cannot be corrected

The combination of climate and soil factors determines soil wetness and droughtiness. Wetness and droughtiness influence the choice of crops grown and the level and consistency of yields, as well as use of land for grazing livestock. The PAL is also concerned with the inherent potential of land under a range of farming systems. The current agricultural use, or intensity of use, does not affect the PAL Grade. The physical limitations of land have four main effects on the way land is farmed. These are:

- the range of crops which can be grown
- the level of yield
- the consistency of yield
- the cost of obtaining the crop

Higher Grade land should provide greater flexibility in the range of crops that can be grown (its 'versatility') and require lower inputs. The higher Grades (1, 2, 3 Division 1) also consider the ability to produce consistently high yields of a narrower range of crops.

#### **Definitions of Land Classification Grades**

Land suited to arable cropping.

**Class 1** - Land capable of producing a very wide range of arable crops. Cropping is highly flexible and includes the more exacting crops such as winter harvested vegetables. The levels of yield are consistently high.

**Class 2-** Land capable of producing a wide range of arable crops. Cropping is very flexible and a wide range of crops may be grown but difficulties with winter vegetables may be encountered in some years. The level of yield is high but less consistently obtained than in Class 1.

Class 3 - Land capable of producing a moderate range of crops.

Division I - The land can produce consistently high yields of a narrow range of crops (cereals and grass) or moderate yields of a wider range (potatoes, field beans and other vegetables and root crops). Grass leys of short duration are common.

Division 2 - The land is capable of average production, but high yields of grass, barley and oats are often obtained. Grass leys are common and longer than in Division 1.

Class 4 - Land capable of producing a narrow range of crops.

Division 1 - Long ley grassland is commonly encountered but the land can produce some forage crops and cereal for stock.

Division 2 - Primarily grassland with some limited potential for other crops.

The Macauley PAL survey summarised in 1984, shows the whole Site to be Grade 2 and 3 Division 1.

#### **5.0 Published Survey Information**

The Provisional PAL amalgamated organisation and method document 1984 carried out by *Macauley Institute for Soil Research Aberdeen*, (updated 19/06/2024) showed the whole surveyed site to be Grade 2 and 3 Division 1. These reports are based on assessments 1:65,000 or 1:250,000 and are purely for guidance purposes.

#### 6.0 Survey Results

The field survey work was carried out in accordance with the method described in the PAL Guidelines. The presence of stones restricted auger borings to a maximum of 700mm. Confirmation of soil types and physical details was supported by the laboratory results in Appendix 8.

The following soil grades were found within the survey area. Appendix 3 has a description of the sample point profiles. Appendix 4 has a map showing the respective grades and details of auger boring points. Table 3 shows a summary of the ALC grades found on the site, a visual of this shown on a map can be found at Appendix 2.

**Table 3 Summary of ALC Grades** 

| Grade/Subgrade                | Approximate Area Ha | Area % |
|-------------------------------|---------------------|--------|
| 2                             | 46                  | 48.9   |
| 3 Division 1                  | 47                  | 50.0   |
| Non-Agricultural (tracks etc) | 1                   | 1.1    |

| 7 | Fotal | 94 | 100 |
|---|-------|----|-----|
|   |       |    |     |

The detailed survey showed that the topsoil's were predominantly silty sandy loam, silty to clay loam and varied between 350 and 500 mm in depth across the site. Sub-soils were predominantly sandy loams to sand. Medium stones were predominant in the central section. The main grade limits were droughtiness, stones and topsoil depth.

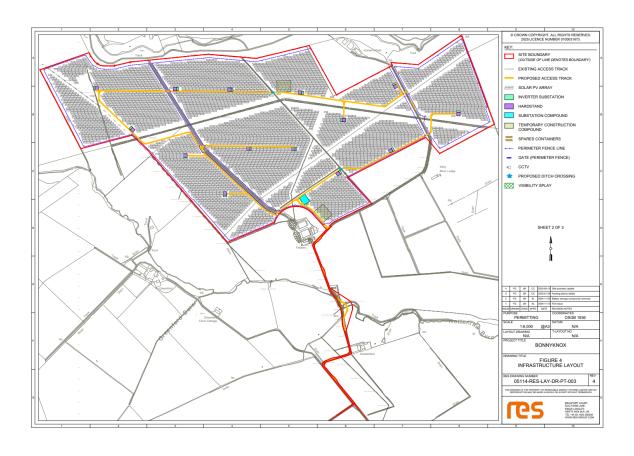
#### Grade 2

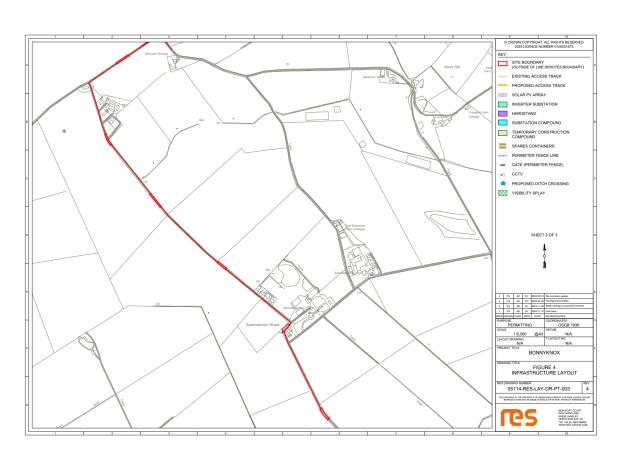
These soils made up 48.9% of the area. The soils had topsoil depth up to 500 mm and were predominantly sandy silty loams. Subsoils varied from clay loams to sandy silty loams. The restriction to grade was either due to topsoil depth, stone content or drought limitations.

#### 3 Division 1:

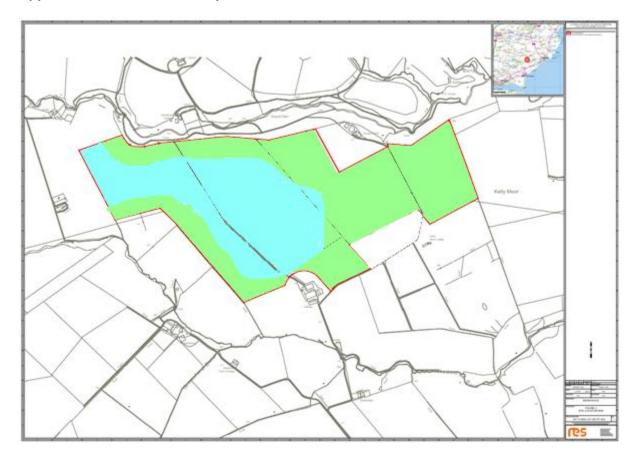
This was the largest soil class accounting for 50% of the area. The difference in this grade compared to grade 2, was that the soils were of a more inconsistent depth. Topsoil is stony silty clay loam. Subsoils had more silt, clay and loam content and often restricted in depth by stone content. The main limitations to this grade remained the soil depth and wetness category.

#### 7.0 Conclusion


It should be noted that the Renewable and Low Carbon Energy Development Supplementary Guidance from Angus Council states that "solar farms may be located on good quality agricultural land and where possible grazing options should be considered."


The published works shows the entire site to be Prime Agricultural Land. The detailed survey shows the shortcomings of the Macauley PAL survey summarised in 1984 survey both Class 3 Division 2 and Class 4 Division 1 being present in the surrounding area. Most of the site is classed as Lower Class 3 Division 1 (50%). It is worth noting that the soil division between Class 2 and Class 3 Division 1 can be affected by cropping practices.

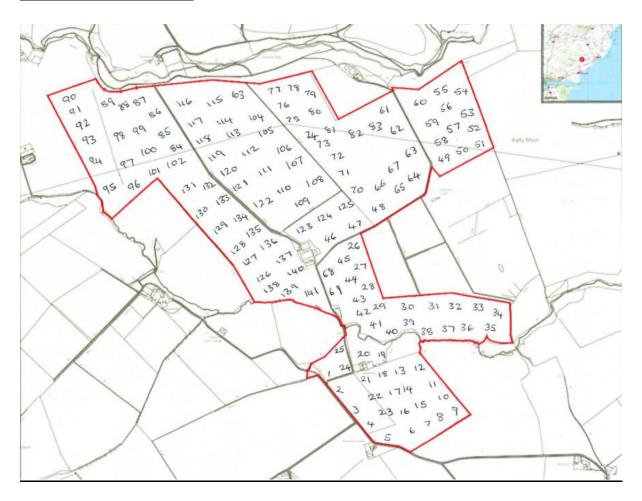
Fields that are in potato production have undertaken a cultivation pass which is called de-stoning which involves removing stones from the ridged area and placing them in an adjoining furrow. Removing the impediment of stone gives an incorrect topsoil depth which is one of the criteria for land classification. In these areas, two thirds of the field would have artificially deep topsoil. Soil borings carried out between 103 and 122 could lead to interpretation issues as topsoil depth can be increased without the barrier of stones. This can then lead to an overestimate of land capability particularly from Grade 3.1 to Grade 2. The growing of potatoes subjects the soil to intensive


mechanical cultivations often taking several seasons to regain its structure and diversity. The use of the land for solar capture will mean that the soils will have 40 years to develop good structure and diverse fauna. On the return to arable farming, they will have improved resilience and productive potential helping to ensure the continued availability of good quality agricultural land for future generations.

### Appendix 1 – Location of Development Site






Appendix 2 - Detailed ALC map



Key

| Grade 2 - 48.6%        |  |
|------------------------|--|
| Grade 3 Division - 50% |  |

## **Appendix 3 Sample points**



## <u>Appendix 4 - Sample Point Descriptions</u>

## **SOIL PROFILE SURVEY RESULTS**

Soil Type Key:

O- ORGANIC

C- CLAY

S- SAND

L- LOAM

Z- SILT

P- PEAT

| Hole      | Grid ref                      | Texture           | Depth mm             | Stones                                                       | Wetness Class |
|-----------|-------------------------------|-------------------|----------------------|--------------------------------------------------------------|---------------|
| 1<br>99M  | N56° 33. 078                  | SL                | 0-30                 | Medium Stones                                                | III           |
|           | W002° 41. 955                 | Till              | 30+                  | Small medium<br>stones Coarse<br>sandy loam                  |               |
| 2<br>100M | N56° 33. 058                  | SZL               | 0-30                 | Medium Stones                                                | III           |
|           | W002° 41. 938                 | Till              | 30+                  | Small medium<br>stones Coarse<br>sandy loam                  |               |
| 3<br>101M | N56° 33. 009<br>W002° 41. 877 | SL<br>SZL<br>Till | 0-30<br>30-40<br>40+ | Medium Stones                                                | III           |
| 4<br>102M | N56° 32. 954<br>W002° 41. 782 | SZL<br>Till       | 0-30<br>30+          | Medium Stones<br>Small medium<br>stones Coarse<br>sandy loam | III           |
| 5<br>102M | N56° 32. 942                  | SZL               | 0-30                 | Medium Stones                                                | III           |
|           | W002° 41. 707                 | Till              | 30+                  | Small medium<br>stones Coarse<br>sandy loam                  |               |

| <u></u>   |               |                              |               |                                             |     |
|-----------|---------------|------------------------------|---------------|---------------------------------------------|-----|
| 6<br>101M | N56° 32. 936  | SZL                          | 0-40          | Less Stones                                 | III |
|           | W002° 41. 635 | Till                         | 40+           | Small stones<br>Coarse sandy<br>loam        |     |
| 7<br>101M | N56° 32. 951  | SZL                          | 0-30          | Medium Stones                               | III |
|           | W002° 41. 549 | Till                         | 30+           | Small medium<br>stones Coarse<br>sandy loam |     |
| 8<br>99M  | N56° 32. 980  | ZL                           | 0-35          | Medium Stones                               | III |
| 33141     | W002° 41. 486 | Glacial Till<br>Coarse Sand  | 35+           | Small medium<br>stones Coarse<br>sandy loam |     |
| 9<br>97M  | N56° 33. 010  | SZL<br>SZL                   | 0-35<br>35-45 | Medium Stones                               | III |
|           | W002° 41. 422 | Glacial Till                 | 45+           | Small medium<br>stones Coarse<br>sandy Ioam |     |
| 10<br>97M | N56° 33. 048  | SZL                          | 0-40          | Small Stones                                | 111 |
| 37.11     | W002° 41. 479 | CL<br>Glacial Till           | 40-60         | Small medium<br>stones Coarse<br>sandy loam |     |
| 11<br>98M | N56° 33. 085  | ZL                           | 0-25          | Medium Stones                               | III |
| 30111     | W002° 41. 534 | Coarse Sandy<br>Glacial Till | 25+           | Small medium<br>stones Coarse<br>sandy loam |     |
| 12<br>99M | N56° 33. 116  | ZL                           | 0-25          | Medium Stones                               | III |
| J 3 1 V I | W002° 41. 581 | SZL<br>Glacial Till          | 25+           | Small medium<br>stones Coarse<br>sandy loam |     |
| 13        | N56° 33. 091  | SZL                          | 0-35          | Medium Stones                               | III |
| 98M       | W002° 41. 650 | CL                           | 35+           |                                             |     |

|        |               | Glacial Till   |             | Small medium     |     |
|--------|---------------|----------------|-------------|------------------|-----|
|        |               | Giaciai IIII   |             | stones Coarse    |     |
|        |               |                |             | sandy loam       |     |
|        |               |                |             | Sality Iddill    |     |
| 14     |               |                |             |                  | ≡   |
|        | N56° 33. 055  | SZL            | 0-40        | Small Stones     |     |
| 98M    |               |                |             |                  |     |
|        | W002° 41. 596 | CL <del></del> | 40-60       | Small medium     |     |
|        |               | Glacial Till   |             | stones Coarse    |     |
| 15     |               |                |             | sandy loam       | III |
|        | N56° 33. 018  | SZL            | 0-40        | Medium Stones    | ""  |
| 98M    | 35.010        | SZL            | 0 40        | Wicdiani Stories |     |
| 30.11  | W002° 41. 538 | CL             | 40+         | Small medium     |     |
|        |               | Glacial Till   |             | stones Coarse    |     |
|        |               |                |             | sandy loam       |     |
| 16     |               |                |             |                  | Ш   |
|        | N56° 32. 980  | SZL            | 0-35        | Medium Stones    |     |
| 101M   |               |                |             |                  |     |
|        | W002° 41. 593 | CL             | 35-50       | Small medium     |     |
|        |               |                |             | stones Coarse    |     |
|        |               | Glacial Till   | 50+         | sandy loam       |     |
| 17     |               |                |             |                  | III |
|        | N56° 33. 019  | SZL            | 0-30        | Medium Stones    | ""  |
| 101M   |               | 321            | 0 30        | Wicdiam Stones   |     |
|        | W002° 41. 653 | CL             | 30-50       | Small medium     |     |
|        |               |                |             | stones Coarse    |     |
|        |               | Glacial Till   | 50+         | sandy loam       |     |
| 18     |               |                |             |                  | III |
|        | N56° 33. 058  | SZL            | 0-40        | Small Stones     |     |
| 101M   |               |                |             |                  |     |
|        | W002° 41. 711 | CL             | 40-60       | Small stones     |     |
|        |               | Clasial Till   | <b>CO</b> . | Coarse sandy     |     |
| 19     |               | Glacial Till   | 60+         | loam             | II  |
| 19     | N56° 33. 127  | SL             | 0-20        |                  | 11  |
| 102M   |               | J.             | 0-20        |                  |     |
| 102141 | W002° 41. 748 | Stone          | 20+         | Medium Large     |     |
|        |               |                |             | flat stones      |     |
| 20     |               |                |             |                  | II  |
|        | N56° 33. 130  | SL             | 0-20        |                  |     |
| 99M    |               |                |             | Medium Large     |     |
|        | W002° 41. 796 | Stone          | 20+         | flat stones      |     |
|        |               |                |             |                  |     |
| 21     |               |                |             |                  | II  |
|        | N56° 33. 066  | SL             | 0-20        | Medium Stones    |     |

|      |               | SZL                | 20-40 |                            |     |
|------|---------------|--------------------|-------|----------------------------|-----|
|      | W002° 41. 794 | Glacial Till       | 40+   | Medium Large               |     |
|      |               |                    |       | flat stones                |     |
| 22   |               |                    |       |                            | III |
|      | N56° 33. 033  | SZL                | 0-30  | Less Stones                |     |
| 99M  |               |                    |       |                            |     |
|      | W002° 41. 744 | CL<br>Clasial Till | 35-50 | Small stones               |     |
|      |               | Glacial Till       |       | Coarse sandy<br>loam       |     |
|      |               | Glacial Till       | 50+   | IOaiii                     |     |
| 23   |               | Glaciai Tili       | 301   |                            | III |
|      | N56° 32. 994  | SZL                | 0-35  | Less Stones                |     |
|      |               |                    |       |                            |     |
|      | W002° 41. 685 | Coarse Sandy       | 35+   | Small stones               |     |
|      |               | Loam               |       | Coarse sandy               |     |
|      |               | Glacial Till       |       | loam                       |     |
| 24   |               |                    |       |                            | III |
|      | N56° 33. 096  | SZL                | 0-25  |                            |     |
| 98M  | W002° 41. 864 | Stoney             | 25+   | Small medium               |     |
|      | VV002 41.804  | Glacial Till       | 25+   | stones Coarse              |     |
|      |               | Gracial Till       |       | sandy loam                 |     |
| 25   |               |                    |       | 1, 1,                      | III |
|      | N56° 33. 147  | SZL                | 0-30  |                            |     |
| 98M  |               |                    |       |                            |     |
|      | W002° 41. 896 | Glacial Till       | 30+   | Small medium               |     |
|      |               |                    |       | stones Coarse              |     |
| 2.5  |               |                    |       | sandy loam                 |     |
| 26   | NE6° 22 200   | C71                | 0.30  |                            | III |
| 104M | N56° 33. 390  | SZL                | 0-30  |                            |     |
|      | W002° 41. 844 | SL                 | 30-50 |                            |     |
|      |               |                    |       | Small medium               |     |
|      |               | Glacial Till       | 50+   | stones Coarse              |     |
|      |               |                    |       | sandy loam                 |     |
| 27   |               |                    |       |                            | III |
|      | N56° 33. 346  | SZL                | 0-25  |                            |     |
| 102M |               | 671                | 25.50 |                            |     |
|      | W002° 41. 851 | SZL                | 25-50 | Cmall madium               |     |
|      |               | Stone              | 50+   | Small medium stones Coarse |     |
|      |               | Storic             | 30.   | sandy loam                 |     |
| 28   |               |                    |       |                            | III |
|      | N56° 33. 300  | SZL                | 0-35  |                            |     |
| 101M |               |                    |       |                            |     |
|      | W002° 41. 851 | Coarse Gravel      | 35+   |                            |     |
|      |               | Glacial Till       |       |                            |     |

|            |               |                              |       | Small medium<br>stones Coarse<br>sandy loam |     |
|------------|---------------|------------------------------|-------|---------------------------------------------|-----|
| 29<br>101M | N56° 33. 253  | SZL                          | 0-25  | Lots of Large,<br>Medium and                | II  |
|            | W002° 41. 754 | SZL - More<br>Stones         | 25-35 | Small stones                                |     |
|            |               | Glacial Till                 | 35+   |                                             |     |
| 30         | N56° 33. 258  | SZL                          | 0-25  | Lots of Large,                              | II  |
| 95M        | W002° 41. 669 | SZL - More<br>Stones         | 25-35 | Medium and<br>Small stones                  |     |
|            |               | Glacial Till                 | 35+   |                                             |     |
| 31<br>96M  | N56° 33. 262  | SZL                          | 0-30  |                                             | III |
| JOIVI      | W002° 41. 572 | CSL – Less Stone             | 30-50 | Small stones                                |     |
|            |               | Glacial Till                 | 50+   | Coarse sandy<br>loam                        |     |
| 32<br>96M  | N56° 33. 267  | SZL                          | 0-30  |                                             | III |
|            | W002° 41. 476 | Gravel Stone<br>Glacial Till | 30+   | Small medium<br>stones Coarse<br>sandy loam |     |
| 33         | N56° 33. 264  | SZL                          | 0-40  | ,                                           | III |
| 94M        | W002° 41. 375 | Coarse Sandy Till            | 40-60 | Small medium<br>stones Coarse<br>sandy loam |     |
|            |               | Stone                        | 60+   | Large flat stones                           |     |
| 34<br>91M  | N56° 33. 255  | SL                           | 0-25  |                                             | II  |
| 91101      | W002° 41. 263 | Gravel Coarse<br>Sandy Loam  | 25+   | Small medium<br>stones Coarse<br>sandy loam |     |
| 35         | N56° 33. 203  | SZL                          | 0-30  |                                             |     |

| 93M   |               |                             |       |                                             |      |
|-------|---------------|-----------------------------|-------|---------------------------------------------|------|
| 33141 | W002° 41. 203 | Gravel Coarse<br>Sandy Loam | 30-50 |                                             |      |
|       |               | Glacial Till                | 50+   | Small medium<br>stones Coarse<br>sandy loam |      |
| 36    |               |                             |       |                                             | ll l |
|       | N56° 33. 212  | SZL                         | 0-30  |                                             |      |
| 92M   | W002° 41. 287 | SL                          | 30-50 | Small stones                                |      |
|       |               | Glacial Till                | 50+   | Coarse sandy                                |      |
| 37    |               | Glacial IIII                | 50+   | loam                                        | <br> |
| 37    | N56° 33. 219  | SZL                         | 0-30  |                                             | "    |
| 94M   |               | <u></u>                     |       |                                             |      |
|       | W002° 41. 382 | SL                          | 30-50 | Small stones<br>Coarse sandy                |      |
|       |               | Glacial Till                | 50+   | loam                                        |      |
| 38    |               |                             |       |                                             | II   |
| 0714  | N56° 33. 220  | SZL                         | 0-25  |                                             |      |
| 97M   | W002° 41. 489 | SL                          | 25-35 | Small medium                                |      |
|       | VV002 41.489  | Stone Till                  | 35+   | stones Coarse                               |      |
|       |               |                             |       | sandy loam                                  |      |
| 39    |               |                             |       |                                             | II   |
|       | N56° 33. 215  | SZL                         | 0-25  |                                             |      |
| 97M   |               |                             | 05.05 |                                             |      |
|       | W002° 41. 589 | SL                          | 25-35 | Small medium                                |      |
|       |               | Stone Till                  | 35+   | stones Coarse                               |      |
|       |               | Storre Till                 |       | sandy loam                                  |      |
| 40    |               |                             |       | ,                                           | II   |
|       | N56° 33. 214  | SZL                         | 0-25  |                                             |      |
| 98M   |               |                             |       |                                             |      |
|       | W002° 41. 729 | SL                          | 25-35 | Small medium                                |      |
|       |               | Stone Till                  | 35+   | stones Coarse                               |      |
|       |               | Storie IIII                 | 33.   | sandy loam                                  |      |
| 41    |               |                             |       | ,                                           | II   |
|       | N56° 33. 180  | SZL                         | 0-20  |                                             |      |
| 94M   |               |                             |       |                                             |      |
|       | W002° 41. 742 | SL                          | 20-35 | Cmall madi:                                 |      |
|       |               | Stone Till                  | 35+   | Small medium stones Coarse                  |      |
|       |               | Storic IIII                 | 55.   | sandy loam                                  |      |
| 42    |               |                             |       | Small medium                                | ll   |
|       | N56° 33. 246  | SZL                         | 0-20  | stones                                      |      |

| 100M |               |                  |       | Coarse sandy                |     |
|------|---------------|------------------|-------|-----------------------------|-----|
|      | W002° 41. 814 | SL               | 20-35 | loam very stoney            |     |
|      |               |                  |       |                             |     |
|      |               | Stone Till       | 35+   |                             |     |
| 43   |               |                  |       |                             | III |
|      | N56° 33. 289  | SZL              | 0-30  |                             |     |
| 104M |               |                  |       |                             |     |
|      | W002° 41. 841 | Coarse SL        | 30-40 | Small medium                |     |
|      |               | Till             | 40+   | stones Coarse               |     |
|      |               |                  |       | sandy loam                  |     |
| 44   |               |                  |       |                             | ≡   |
| 106M | N56° 33. 328  | SZL              | 0-25  | Small medium                |     |
|      | W002° 41. 867 | Coarse SL & Till | 25+   | stones Coarse               |     |
|      |               |                  |       | sandy loam                  |     |
| 45   |               |                  |       |                             | II  |
| 107M | N56° 33. 371  | SZL              | 0-25  |                             |     |
|      | W002° 41. 894 | Coarse SL & Till | 25+   | Small medium                |     |
|      |               |                  |       | stones Coarse               |     |
|      |               |                  |       | sandy loam                  |     |
| 46   | N56° 33. 393  | SZL              | 0-25  |                             | II  |
| 105M |               | 32L              | 0-23  |                             |     |
|      | W002° 41. 962 | Coarse SL & Till | 25+   | Small medium                |     |
|      |               |                  |       | stones Coarse               |     |
| 47   |               | _                |       | sandy loam                  |     |
| 47   | N56° 33. 425  | SZL              | 0-30  |                             | III |
|      |               |                  |       | Small medium                |     |
|      | W002° 41. 878 | Coarse SL        | 30-40 | stones Coarse               |     |
|      |               | Till             | 40+   | sandy loam                  |     |
| 48   |               | 1111             | 701   |                             | III |
|      | N56° 33. 451  | SCL              | 0-35  |                             |     |
| 106M |               |                  |       | Small medium                |     |
|      | W002° 41. 803 | Coarse SZL       | 35-50 | stones Coarse<br>sandy loam |     |
|      |               | Till             | 50+   | Gleying                     |     |
| 49   |               |                  |       | , ,                         | III |
|      | N56° 33. 587  | SZL              | 0-35  | Medium Stones               |     |
| 101M | W002° 41. 428 | CL               | 35-50 | Small medium stones Coarse  |     |
|      | VV UUZ 41.420 | CL               | 33-30 | sandy loam                  |     |
|      |               | Till             | 50+   | Gleying                     |     |

|            | 1             | 1                    |              |                                             |     |
|------------|---------------|----------------------|--------------|---------------------------------------------|-----|
| 50         | N56° 33. 605  | SZL                  | 0-35         |                                             | III |
|            | W002° 41. 359 | CL                   | 30-50        | Small medium                                |     |
| F.4        |               | Till                 | 50+          | stones Coarse<br>sandy loam                 |     |
| 51         | N56° 33. 628  | SZL                  | 0-35         |                                             | III |
| 99M        | W002° 41. 298 | CL                   | 30-50        | Small medium                                |     |
|            |               | Till                 | 50+          | stones Coarse<br>sandy loam                 |     |
| 52         | NEC 22 C74    | 671                  | 0.25         |                                             | III |
| 100M       | N56° 33. 671  | SZL                  | 0-25         |                                             |     |
|            | W002° 41. 333 | CL<br>Coarse SL Till | 25-40<br>40+ | Small medium<br>stones Coarse               |     |
| 53         |               |                      |              | sandy loam                                  | III |
| 100M       | N56° 33. 714  | SZL                  | 0-30         |                                             |     |
| 100101     | W002° 41. 363 | CL                   | 30-50        | Small medium                                |     |
|            |               | Till                 | 50+          | stones Coarse<br>sandy loam                 |     |
| 54         | N56° 33. 774  | SZL                  | 0-30         | ,                                           | III |
| 101M       | W002° 41. 404 | CL                   | 30-50        |                                             |     |
|            |               | Till                 | 50+          | Small medium<br>stones Coarse<br>sandy loam |     |
| 55<br>100M | N56° 33. 767  | SZL                  | 0-30         |                                             | III |
| 100101     | W002° 41. 487 | CL                   | 30-50        | Small medium                                |     |
|            |               | Till                 | 50+          | stones Coarse<br>sandy loam                 |     |
| 56         | N56° 33. 718  | SZL                  | 0-30         |                                             | III |
| 98M        | W002° 41. 453 | CL                   | 30-50        | Small medium                                |     |
|            |               | Till                 | 50+          | stones Coarse<br>sandy loam                 |     |

| 57   | N56° 33. 665  | SZL  | 0-30  |                                             | III |
|------|---------------|------|-------|---------------------------------------------|-----|
|      | W002° 41. 417 | CL   | 30-50 |                                             |     |
|      |               | Till | 50+   | Small medium<br>stones Coarse<br>sandy loam |     |
| 58   | N56° 33. 617  | SZL  | 0-30  |                                             | III |
| 102M | W002° 41. 521 | CL   | 30-50 |                                             |     |
|      |               | Till | 50+   | Small medium<br>stones Coarse<br>sandy loam |     |
| 59   |               |      |       |                                             | III |
| 102M | N56° 33. 660  | SZL  | 0-30  |                                             |     |
|      | W002° 41. 559 | SZL  | 30-50 | Small medium                                |     |
|      |               | Till | 50+   | stones Coarse<br>sandy loam                 |     |
| 60   |               |      |       |                                             | III |
|      | N56° 33. 722  | SZL  | 0-35  |                                             |     |
|      | W002° 41. 603 | CL   | 35-50 |                                             |     |
|      |               | Till | 50+   | Small medium<br>stones Coarse<br>sandy loam |     |
| 61   | N56° 33. 736  | SZL  | 0-35  |                                             | III |
|      | W002° 41. 699 | CL   | 35-50 |                                             |     |
|      |               | Till | 50+   | Small medium<br>stones Coarse<br>sandy loam |     |
| 62   | N56° 33. 641  | SZL  | 0-25  |                                             | III |
|      | W002° 41. 589 | CL   | 25-50 | Small medium stones Coarse                  |     |
|      |               | Till | 50+   | sandy loam                                  |     |

| 63         |               |           |       |                                             | III |
|------------|---------------|-----------|-------|---------------------------------------------|-----|
| 03         | N56° 33. 606  | SZL       | 0-35  |                                             | III |
|            | W002° 41. 571 | CL        | 35-60 |                                             |     |
|            |               | Till      | 60+   | Small medium<br>stones Coarse<br>sandy loam |     |
| 64         | N56° 33. 571  | SZL       | 0-30  |                                             | III |
|            | W002° 41. 545 | CL        | 30-50 |                                             |     |
|            |               | Till      | 50+   | Small medium<br>stones Coarse<br>sandy loam |     |
| 65         | NEC° 22, E22  | C71       | 0.30  | ·                                           | III |
| 101M       | N56° 33. 520  | SZL       | 0-30  |                                             |     |
|            | W002° 41. 572 | CL        | 30-50 | Small medium stones Coarse                  |     |
|            |               | Till      | 50+   | sandy loam                                  |     |
| 66<br>102M | N56° 33. 490  | SZL       | 0-30  |                                             | III |
| TUZIVI     | W002° 41. 635 | CL        | 30-50 | Small medium stones Coarse                  |     |
|            |               | Till      | 50+   | sandy loam                                  |     |
| 67         | N56° 33. 466  | SZL       | 0-30  |                                             | III |
| 100M       | W002° 41. 705 | CL        | 30-50 |                                             |     |
|            |               | Till      | 50+   | Small medium<br>stones Coarse<br>sandy loam |     |
| 68         | N56° 33. 333  | SZL       | 0-25  |                                             | III |
|            | W002° 41. 972 | Till      | 25-50 | Small medium<br>stones Coarse<br>sandy loam |     |
| 69         | NEC° 22, 204  | C71       | 0.20  |                                             | III |
| 100M       | N56° 33. 281  | SZL       | 0-30  |                                             |     |
|            | W002° 41. 937 | Coarse SL | 30-50 |                                             |     |
|            |               | Till      | 50+   |                                             |     |

|      |               |       |       | Circa III iro a dii iiro |     |
|------|---------------|-------|-------|--------------------------|-----|
|      |               |       |       | Small medium             |     |
|      |               |       |       | stones Coarse            |     |
| 70   |               |       |       | sandy loam               |     |
| 70   | NIE Cº 22 40E | 671   | 0.20  |                          | III |
|      | N56° 33. 495  | SZL   | 0-30  |                          |     |
| 104M |               | CI    | 20.50 |                          |     |
|      | W002° 41. 824 | CL    | 30-50 | Small medium             |     |
|      |               | Till  | 50+   | stones Coarse            |     |
|      |               |       | 30+   | sandy loam               |     |
| 71   |               |       |       | Sandy Idam               | III |
|      | N56° 33. 536  | SZL   | 0-25  | Less Stone               | 111 |
| 103M |               | SZL   | 0-23  | Less stolle              |     |
|      | W002° 41. 915 | CL    | 25-50 |                          |     |
|      | VV002 41. 313 | CL    | 25 50 |                          |     |
|      |               | Till  | 50+   | Small medium             |     |
|      |               | ' ''' |       | stones Coarse            |     |
|      |               |       |       | sandy loam               |     |
| 72   |               |       |       |                          | III |
|      | N56° 33. 570  | SZL   | 0-30  | Less Stone               |     |
| 105M |               |       |       |                          |     |
|      | W002° 41. 971 | CL    | 30-50 |                          |     |
|      |               |       |       |                          |     |
|      |               | Till  | 50+   | Small medium             |     |
|      |               |       |       | stones Coarse            |     |
|      |               |       |       | sandy loam               |     |
| 73   |               |       |       |                          | III |
|      | N56° 33. 604  | SZL   | 0-30  | Less Stone               |     |
| 106M |               |       |       |                          |     |
|      | W002° 42. 026 | CL    | 30-50 | Small medium             |     |
|      |               |       |       | stones Coarse            |     |
|      |               | Till  | 50+   | sandy loam               |     |
|      |               |       |       |                          |     |
| 74   |               |       |       |                          | III |
|      | N56° 33. 655  | SZL   | 0-35  | Less Stone               |     |
| 107M |               |       | 25.60 |                          |     |
|      | W002° 42. 107 | CL    | 35-60 |                          |     |
|      |               | T:11  | 60.   | Small medium             |     |
|      |               | Till  | 60+   |                          |     |
|      |               |       |       | stones Coarse            |     |
| 75   |               |       |       | sandy loam               | III |
|      | N56° 33. 497  | SZL   | 0-35  | Less Stone               | 111 |
| 107M |               | SZL   | 0-35  | Less stolle              |     |
|      | W002° 42. 179 | CL    | 35-60 |                          |     |
|      | 72.1/3        |       | 33 00 |                          |     |
|      |               | Till  | 60+   |                          |     |
|      | 1             | 1     | 100.  |                          |     |

|        |               |      |       | G 11 1:                                     |     |
|--------|---------------|------|-------|---------------------------------------------|-----|
|        |               |      |       | Small medium                                |     |
|        |               |      |       | stones Coarse                               |     |
| 7.0    |               |      |       | sandy loam                                  |     |
|        | N56° 33. 736  | SZL  | 0-25  | More Stone                                  | III |
| 111M   | W002° 42. 243 | CL   | 25-40 | Small medium                                |     |
|        |               | Till | 40+   | stones Coarse<br>sandy loam                 |     |
| 77     |               |      |       |                                             | III |
|        | N56° 33. 765  | SZL  | 0-25  | More Stone                                  | *** |
| 112M   | W002° 42. 264 | CL   | 25-40 |                                             |     |
|        |               | Till | 40+   | Small medium<br>stones Coarse<br>sandy loam |     |
| 78     |               |      |       |                                             | III |
| 109M   | N56° 33. 779  | SZL  | 0-25  | More Stone                                  |     |
| 109101 | W002° 42. 178 | CL   | 25-40 |                                             |     |
|        |               | Till | 40+   | Small medium<br>stones Coarse<br>sandy loam |     |
| 79     |               |      |       | Suriay roum                                 | III |
|        | N56° 33. 791  | SZL  | 0-30  | Less Stone                                  |     |
|        | W002° 42. 091 | CL   | 30-50 |                                             |     |
|        |               | Till | 50+   | Small medium<br>stones Coarse<br>sandy loam |     |
| 80     |               |      |       |                                             | III |
| 105M   | N56° 33. 759  | SZL  | 0-25  | More Stone                                  |     |
| 103141 | W002° 42. 019 | CL   | 25-40 |                                             |     |
|        |               | Till | 40+   | Small medium<br>stones Coarse<br>sandy loam |     |
| 81     |               |      |       |                                             | III |
| 102M   | N56° 33. 698  | SZL  | 0-35  | Less Stone                                  |     |
|        | W002° 41. 957 | CL   | 35-50 |                                             |     |
|        | 1             |      |       |                                             |     |

|      |               | T:11 | FO.             | Consult on a divina |     |
|------|---------------|------|-----------------|---------------------|-----|
|      |               | Till | 50+             | Small medium        |     |
|      |               |      |                 | stones Coarse       |     |
|      |               |      |                 | sandy loam          |     |
| 82   | N56° 33. 699  | SZL  | 0-25            | More Stone          | III |
| 103M |               | 321  | 0 23            | Word Storic         |     |
|      | W002° 41. 876 | CL   | 25-40           | Small medium        |     |
|      |               |      |                 | stones Coarse       |     |
|      |               | Till | 40+             | sandy loam          |     |
|      |               |      |                 |                     |     |
| 83   |               |      |                 |                     | Ш   |
|      | N56° 33. 729  | SZL  | 0-25            | More Stone          |     |
| 101M |               |      | 25.40           |                     |     |
|      | W002° 41. 770 | CL   | 25-40           |                     |     |
|      |               | Till | 40+             | Small medium        |     |
|      |               |      | 70.             | stones Coarse       |     |
|      |               |      |                 | sandy loam          |     |
| 84   |               |      |                 | 11 1, 11            | III |
|      | N56° 33. 643  | SZL  | 0-35            | De-Stoned           |     |
| 117M |               |      |                 |                     |     |
|      | W002° 42. 585 | CL   | 35-50           |                     |     |
|      |               |      |                 |                     |     |
|      |               | Till | 50+             |                     |     |
| 0.5  |               |      |                 |                     |     |
| 85   | N56° 33. 682  | SZL  | 0-40            | De-Stoned           | III |
| 118M |               | SZL  | 0-40            | De-Stoffed          |     |
|      | W002° 42. 631 | CL   | 40-60           |                     |     |
|      |               |      |                 |                     |     |
|      |               | Till | 60+             | Small medium        |     |
|      |               |      |                 | stones Coarse       |     |
|      |               |      |                 | sandy loam          |     |
| 86   |               |      |                 |                     | Ш   |
|      | N56° 33. 727  | SZL  | 0-35            | De-Stoned           |     |
| 122M |               |      |                 |                     |     |
|      | W002° 42. 684 | CL   | 35-50           |                     |     |
|      |               | Till | 50+             | Small medium        |     |
|      |               | '''' | JU <sup>+</sup> | stones Coarse       |     |
|      |               |      |                 | sandy loam          |     |
| 87   |               |      |                 | 55.15.7.15.0111     | III |
|      | N56° 33. 750  | SZL  | 0-35            |                     |     |
| 123M |               |      |                 |                     |     |
|      | W002° 42. 757 | SZL  | 35-50           |                     |     |
|      |               |      |                 |                     |     |
|      |               | Till | 50+             |                     |     |

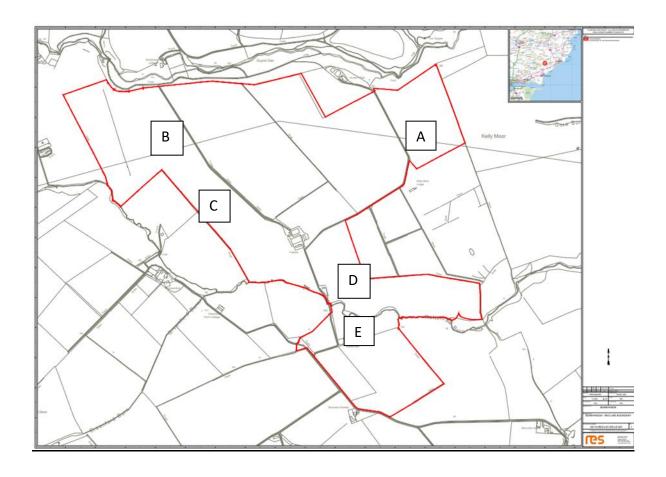
|      |                |            |       | Casallas adicus |     |
|------|----------------|------------|-------|-----------------|-----|
|      |                |            |       | Small medium    |     |
|      |                |            |       | stones Coarse   |     |
|      |                |            |       | sandy loam      |     |
| 88   |                |            |       |                 | III |
|      | N56° 33. 736   | SZL        | 0-35  |                 |     |
| 127M |                |            |       |                 |     |
|      | W002° 42. 862  | SZL        | 35-50 |                 |     |
|      |                |            |       | Small medium    |     |
|      |                | Till       | 50+   | stones Coarse   |     |
|      |                |            |       | sandy loam      |     |
| 89   |                |            |       | ,               | III |
|      | N56° 33. 762   | SZL        | 0-35  |                 |     |
| 126M | 1133 331 732   |            |       |                 |     |
|      | W002° 42. 970  | CL         | 35-50 |                 |     |
|      | W002 42.370    |            | 33 30 | Small medium    |     |
|      |                | Till       | 50+   | stones Coarse   |     |
|      |                | ''''       | 30+   |                 |     |
| 00   |                |            |       | sandy loam      |     |
| 90   | NEC 22 742     | 671        | 0.25  |                 | III |
|      | N56° 33. 743   | SZL        | 0-35  |                 |     |
| 126M |                |            |       |                 |     |
|      | W002° 43. 063  | CL         | 35-50 |                 |     |
|      |                |            |       | Small medium    |     |
|      |                | Till       | 50+   | stones Coarse   |     |
|      |                |            |       | sandy loam      |     |
| 91   |                |            |       |                 | III |
|      | N56° 33. 699   | SZL        | 0-30  |                 |     |
| 124M |                |            |       |                 |     |
|      | W002° 43. 035  | SZL        | 30-50 |                 |     |
|      |                |            |       | Small medium    |     |
|      |                | Till       | 50+   | stones Coarse   |     |
|      |                |            |       | sandy loam      |     |
| 92   |                |            |       |                 | III |
|      | N56° 33. 650   | SZL        | 0-35  |                 |     |
| 119M |                |            |       |                 |     |
|      | W002° 43. 006  | SZL        | 35-50 |                 |     |
|      |                |            |       | Small medium    |     |
|      |                | Till       | 50+   | stones Coarse   |     |
|      |                |            | 301   | sandy loam      |     |
| 93   |                |            |       | Juliuy Idalii   | III |
|      | NEC. 33 EUO    | C71        | 0.25  |                 | 111 |
|      | N56° 33. 598   | SZL        | 0-35  |                 |     |
| 115M | M(002° 42, 076 | CZI        | 25 50 |                 |     |
|      | W002° 42. 976  | SZL        | 35-50 |                 |     |
|      |                | <b>-</b> : | F-0   |                 |     |
|      |                | Till       | 50+   | Small medium    |     |
|      |                |            |       | stones Coarse   |     |
|      |                |            |       | sandy loam      |     |

| 94         |               |      |       |                                             | III |
|------------|---------------|------|-------|---------------------------------------------|-----|
|            | N56° 33. 544  | SZL  | 0-35  |                                             | III |
| 114101     | W002° 42. 946 | SZL  | 35-50 |                                             |     |
|            |               | Till | 50+   | Small medium<br>stones Coarse<br>sandy loam |     |
| 95<br>109M | N56° 33. 477  | SZL  | 0-35  |                                             | III |
|            | W002° 42. 861 | SZL  | 35-50 | Con all man adicum                          |     |
|            |               | Till | 50+   | Small medium<br>stones Coarse<br>sandy loam |     |
| 96<br>115M | N56° 33. 517  | SZL  | 0-30  |                                             | III |
|            | W002° 42. 819 | SZL  | 30-50 | Constitute of the second                    |     |
|            |               | Till | 50+   | Small medium<br>stones Coarse<br>sandy loam |     |
| 97<br>114M | N56° 33. 584  | SZL  | 0-35  |                                             | III |
|            | W002° 42. 854 | SZL  | 35-50 | Small medium                                |     |
|            |               | Till | 50+   | stones Coarse<br>sandy loam                 |     |
| 98         | N56° 33. 648  | SZL  | 0-35  |                                             | III |
|            | W002° 42. 891 | SZL  | 35-50 |                                             |     |
|            |               | Till | 50+   | Small medium<br>stones Coarse<br>sandy loam |     |
| 99<br>119M | N56° 33. 697  | SZL  | 0-35  |                                             | III |
|            | W002° 42. 808 | SZL  | 35-50 | Small medium stones Coarse                  |     |
|            |               | Till | 50+   | sandy loam                                  |     |
|            | N56° 33. 633  | SZL  | 0-35  |                                             | III |
| 116M       | W002° 42. 771 | SZL  | 35-50 |                                             |     |

|        |               | Till | 50+             | Small medium               |     |
|--------|---------------|------|-----------------|----------------------------|-----|
|        |               | '''' | 50 <del>+</del> | stones Coarse              |     |
|        |               |      |                 | sandy loam                 |     |
| 101    |               |      |                 | Sandy Idam                 | III |
|        | N56° 33. 576  | SZL  | 0-35            |                            |     |
| 114M   |               |      |                 |                            |     |
|        | W002° 42. 738 | SL   | 35-50           |                            |     |
|        |               |      |                 | Small medium               |     |
|        |               | Till | 50+             | stones Coarse              |     |
|        |               |      |                 | sandy loam                 |     |
| 102    |               |      | 2.25            |                            | III |
| 11614  | N56° 33. 600  | SZL  | 0-35            |                            |     |
| 116M   | W002° 42. 652 | CL   | 35-50           |                            |     |
|        | VV002 42.032  | CL   | 33-30           | Small medium               |     |
|        |               | Till | 50+             | stones Coarse              |     |
|        |               |      |                 | sandy loam                 |     |
| 103    |               |      |                 | ,                          | III |
|        | N56° 33. 751  | SZL  | 0-30            |                            |     |
| 119M   |               |      |                 |                            |     |
|        | W002° 42. 417 | SZL  | 30-50           |                            |     |
|        |               |      | _               | Small medium               |     |
|        |               | Till | 50+             | stones Coarse              |     |
| 101    |               |      |                 | sandy loam                 |     |
| 104    | N56° 33. 702  | SZL  | 0-30            |                            | III |
| 115M   |               | 32L  | 0-30            |                            |     |
| 113141 | W002° 42. 336 | CL   | 30-50           |                            |     |
|        |               |      |                 | Small medium               |     |
|        |               | Till | 50+             | stones Coarse              |     |
|        |               |      |                 | sandy loam                 |     |
| 105    |               |      |                 |                            | III |
|        | N56° 33. 648  | SZL  | 0-25            |                            |     |
| 111M   |               |      |                 |                            |     |
|        | W002° 42. 247 | CL   | 25-50           | Carallanad' as             |     |
|        |               | Till | 50+             | Small medium stones Coarse |     |
|        |               |      | 50+             | sandy loam                 |     |
| 106    |               |      |                 | Sariay Idairi              | III |
|        | N56° 33. 594  | SZL  | 0-25            |                            | 111 |
| 109M   |               |      |                 |                            |     |
|        | W002° 42. 158 | CL   | 25-50           |                            |     |
|        |               |      |                 | Small medium               |     |
|        |               | Till | 50+             | stones Coarse              |     |
|        |               |      |                 | sandy loam                 |     |
| 107    |               |      |                 |                            | III |
|        | N56° 33. 539  | SZL  | 0-30            |                            |     |

| 104M   |               |      |       |                             |     |
|--------|---------------|------|-------|-----------------------------|-----|
| 104141 | W002° 42. 069 | CL   | 30-50 |                             |     |
|        |               |      |       | Small medium                |     |
|        |               | Till | 50+   | stones Coarse               |     |
| 108    |               |      |       | sandy loam                  | III |
| 108    | N56° 33. 496  | SZL  | 0-35  |                             | 111 |
| 100M   |               |      |       |                             |     |
|        | W002° 41. 997 | CL   | 35-50 | Small medium                |     |
|        |               | Till | 50+   | stones Coarse<br>sandy Ioam |     |
|        |               |      | 301   | Sandy Idam                  |     |
| 109    |               |      |       |                             | III |
|        | N56° 33. 468  | SZL  | 0-25  |                             |     |
| 106M   | W002° 42. 096 | CL   | 25-50 |                             |     |
|        | W002 42.090   | CL   | 23-30 | Small medium                |     |
|        |               | Till | 50+   | stones Coarse               |     |
|        |               |      |       | sandy loam                  |     |
| 110    | N56° 33. 502  | SZL  | 0-35  |                             | III |
| 104M   | 1050 55.502   | SZL  | 0-55  |                             |     |
|        | W002° 42. 152 | SZL  | 35-50 |                             |     |
|        |               |      |       | Small medium                |     |
|        |               | Till | 50+   | stones Coarse<br>sandy Ioam |     |
| 111    |               |      |       | Saliuy Idalii               | III |
|        | N56° 33. 546  | SZL  | 0-30  |                             |     |
| 104M   |               |      |       |                             |     |
|        | W002° 42. 212 | SZL  | 30-50 | Small medium                |     |
|        |               | Till | 50+   | stones Coarse               |     |
|        |               |      |       | sandy loam                  |     |
| 112    |               |      |       |                             | III |
| 109M   | N56° 33. 579  | SZL  | 0-30  |                             |     |
| TOSIVI | W002° 42. 280 | SZL  | 30-50 |                             |     |
|        |               |      |       | Small medium                |     |
|        |               | Till | 50+   | stones Coarse               |     |
| 112    |               |      |       | sandy loam                  | 111 |
| 113    | N56° 33. 634  | SZL  | 0-25  |                             | III |
|        | 33. 33.       |      |       |                             |     |
|        | W002° 42. 370 | SZL  | 25-50 |                             |     |
|        |               | Till | EO:   | Small medium                |     |
|        |               | Till | 50+   | stones Coarse<br>sandy Ioam |     |
| L      | 1             |      |       | Jan. 2, 100111              |     |

|              | SZL                                                                                                                                           | 0-30                                                                                                                                                                                  |                                                                                                                                                                                                                                                         | III                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 002° 42. 461 |                                                                                                                                               |                                                                                                                                                                                       |                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|              | SZL                                                                                                                                           | 30-50                                                                                                                                                                                 | Small medium                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|              | Till                                                                                                                                          | 50+                                                                                                                                                                                   | stones Coarse<br>sandy loam                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|              |                                                                                                                                               |                                                                                                                                                                                       |                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 6° 33. 745   | SZL                                                                                                                                           | 0-25                                                                                                                                                                                  |                                                                                                                                                                                                                                                         | III                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 002° 42. 550 | SZL                                                                                                                                           | 25-50                                                                                                                                                                                 | Carallar adicus                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|              | Till                                                                                                                                          | 50+                                                                                                                                                                                   | stones Coarse<br>sandy loam                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|              |                                                                                                                                               |                                                                                                                                                                                       |                                                                                                                                                                                                                                                         | III                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 6° 33. 736   | SZL                                                                                                                                           | 0-25                                                                                                                                                                                  |                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 002° 42. 650 | SZL                                                                                                                                           | 25-50                                                                                                                                                                                 | Small modium                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|              | Till                                                                                                                                          | 50+                                                                                                                                                                                   | stones Coarse                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|              |                                                                                                                                               |                                                                                                                                                                                       | sandy loam                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|              |                                                                                                                                               |                                                                                                                                                                                       |                                                                                                                                                                                                                                                         | III                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 6° 33. 696   | SZL                                                                                                                                           | 0-25                                                                                                                                                                                  |                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 002° 42. 607 | SZL                                                                                                                                           | 25-50                                                                                                                                                                                 | Small modium                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|              | Till                                                                                                                                          | 50+                                                                                                                                                                                   | stones Coarse<br>sandy loam                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|              |                                                                                                                                               |                                                                                                                                                                                       |                                                                                                                                                                                                                                                         | III                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 6° 33. 659   | SZL                                                                                                                                           | 0-20                                                                                                                                                                                  |                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 002° 42. 556 | CL                                                                                                                                            | 20-40                                                                                                                                                                                 | Small modium                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|              | Till                                                                                                                                          | 40+                                                                                                                                                                                   | stones Coarse<br>sandy loam                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|              |                                                                                                                                               |                                                                                                                                                                                       |                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 6° 33. 613   | SZL                                                                                                                                           | 0-30                                                                                                                                                                                  |                                                                                                                                                                                                                                                         | III                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 002° 42. 479 | CL                                                                                                                                            | 30-50                                                                                                                                                                                 |                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|              | Till                                                                                                                                          | 50+                                                                                                                                                                                   | stones Coarse                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|              | 5° 33. 745<br>02° 42. 550<br>5° 33. 736<br>02° 42. 650<br>5° 33. 696<br>02° 42. 607<br>5° 33. 659<br>02° 42. 556<br>5° 33. 613<br>02° 42. 479 | 5° 33. 745 SZL 02° 42. 550 SZL Till 5° 33. 736 SZL 02° 42. 650 SZL Till 5° 33. 696 SZL Till 5° 33. 696 SZL Till 5° 33. 659 SZL Till 5° 33. 659 SZL 02° 42. 556 CL Till 5° 33. 613 SZL | 5° 33. 745 SZL 0-25 02° 42. 550 SZL 25-50 Till 50+  5° 33. 736 SZL 0-25 02° 42. 650 SZL 25-50 Till 50+  5° 33. 696 SZL 0-25 02° 42. 607 SZL 25-50 Till 50+  5° 33. 659 SZL 0-20 02° 42. 556 CL 20-40 Till 40+  5° 33. 613 SZL 0-30 02° 42. 479 CL 30-50 | Sandy loam   San |


| 120  |               |      |       |                                             | III |
|------|---------------|------|-------|---------------------------------------------|-----|
|      | N56° 33. 556  | SZL  | 0-40  |                                             |     |
| 100M | W002° 42. 386 | SZL  | 40-50 |                                             |     |
|      |               | Till | 50+   | Small medium<br>stones Coarse<br>sandy loam |     |
| 121  |               |      |       |                                             | III |
|      | N56° 33. 512  | SZL  | 0-35  |                                             |     |
| 110M | W002° 42. 314 | SZL  | 35-50 | Small medium stones Coarse                  |     |
|      |               | Till | 50+   | sandy loam                                  |     |
| 122  |               |      |       |                                             | III |
|      | N56° 33. 465  | SZL  | 0-30  |                                             |     |
| 108M | W002° 42. 237 | SZL  | 30-50 |                                             |     |
|      |               | Till | 50+   | Small medium stones Coarse                  |     |
|      |               |      |       | sandy loam                                  |     |
| 123  |               |      |       |                                             | III |
|      | N56° 33. 411  | SZL  | 0-30  |                                             |     |
| 109M | W002° 42. 054 | CL   | 30-50 | Small medium                                |     |
|      |               | Till | 50+   | stones Coarse                               |     |
|      |               |      |       | sandy loam                                  |     |
| 124  | N56° 33. 435  | SZL  | 0-30  |                                             | III |
|      | W002° 41. 594 | CL   | 30-50 |                                             |     |
|      |               | Till | 50+   | Small medium stones Coarse                  |     |
|      |               |      |       | sandy loam                                  |     |
| 125  | NEC° 22, 402  | C71  | 0.20  |                                             | III |
| 104M | N56° 33. 462  | SZL  | 0-30  |                                             |     |
|      | W002° 41. 925 | CL   | 30-50 |                                             |     |

|      |               | Till  | 50+   | Small medium  |     |
|------|---------------|-------|-------|---------------|-----|
|      |               | ' ''' | 30.   | stones Coarse |     |
|      |               |       |       | sandy loam    |     |
| 126  |               |       |       | Salidy Idaili | III |
|      | N56° 33. 366  | SZL   | 0-30  |               | ""  |
| 111M |               | 521   | 0 30  |               |     |
|      | W002° 42. 314 | CL    | 30-50 |               |     |
|      | 12.311        |       | 30 30 | Small medium  |     |
|      |               | Till  | 50+   | stones Coarse |     |
|      |               |       |       | sandy loam    |     |
| 127  |               |       |       | 11 17 11      | III |
|      | N56° 33. 399  | SZL   | 0-35  |               |     |
| 109M |               |       |       |               |     |
|      | W002° 42. 368 | SZL   | 35-50 |               |     |
|      |               |       |       |               |     |
|      |               | Till  | 50+   | Small medium  |     |
|      |               |       |       | stones Coarse |     |
|      |               |       |       | sandy loam    |     |
| 128  |               |       |       |               | П   |
|      | N56° 33. 433  | SZL   | 0-25  |               |     |
| 111M |               |       |       |               |     |
|      | W002° 42. 420 | SZL   | 25-50 |               |     |
|      |               |       |       | Small medium  |     |
|      |               | Till  | 50+   | stones Coarse |     |
|      |               |       |       | sandy loam    |     |
| 130  |               |       |       |               | II  |
|      | N56° 33. 509  | SZL   | 0-35  |               |     |
| 113M |               |       |       |               |     |
|      | W002° 42. 545 | SZL   | 35-50 |               |     |
|      |               |       |       | Small medium  |     |
|      |               | Till  | 50+   | stones Coarse |     |
|      |               |       |       | sandy loam    |     |
| 131  |               |       |       |               | III |
|      | N56° 33. 548  | SZL   | 0-40  |               |     |
| 115M |               |       |       |               |     |
|      | W002° 42. 603 | SL    | 40-50 |               |     |
|      |               |       |       | Small medium  |     |
|      |               | Till  | 50+   | stones Coarse |     |
|      |               |       |       | sandy loam    |     |
| 132  |               |       |       |               | III |
|      | N56° 33. 585  | SZL   | 0-40  |               |     |
| 111M |               |       |       |               |     |
|      | W002° 42. 520 | SL    | 40-50 |               |     |
|      |               | ···   |       | Small medium  |     |
|      |               | Till  | 50+   | stones Coarse |     |
|      |               |       |       | sandy loam    |     |

| 133         |               |                |       | <u> </u>                                    | III |
|-------------|---------------|----------------|-------|---------------------------------------------|-----|
|             | N56° 33. 537  | SZL            | 0-25  |                                             | ""  |
|             | W002° 42. 455 | CL             | 25-50 |                                             |     |
|             |               | Till           | 50+   | Small medium<br>stones Coarse<br>sandy loam |     |
| 134<br>107M | N56° 33. 505  | SZL            | 0-25  |                                             | III |
|             | W002° 42. 392 | CL             | 25-50 |                                             |     |
|             |               | Till           | 50+   | Small medium<br>stones Coarse<br>sandy loam |     |
|             | N56° 33. 460  | SZL            | 0-25  |                                             | III |
| 105M        | W002° 42. 315 | CL             | 25-50 | Constitute of the constitute of             |     |
|             |               | Till           | 50+   | Small medium<br>stones Coarse<br>sandy loam |     |
| 136<br>105M | N56° 33. 408  | SZL            | 0-35  |                                             | III |
|             | W002° 42. 230 | CL             | 35-50 |                                             |     |
|             |               | Till           | 50+   | Small medium<br>stones Coarse<br>sandy loam |     |
| 137<br>109M | N56° 33. 365  | SZL            | 0-20  | Small medium<br>stones through<br>profile   | II  |
|             | W002° 42. 137 | Gravel/Morrain | 20+   | prome                                       |     |
| 138         | N56° 33. 338  | SZL            | 0-25  | Lots of small and                           | II  |
| 105M        | W002° 42. 235 | Till           | 25+   | medium stones                               |     |
| 139         |               |                |       |                                             | II  |
| 100M        | N56° 33. 266  | SZL            | 0-20  | Small medium stones through                 |     |
|             | W002° 42. 037 | Gravel         | 20+   | profile                                     |     |

|     | SZL<br>Gravel |      | Small medium<br>stones through<br>profile | II |
|-----|---------------|------|-------------------------------------------|----|
| 98M | SZL<br>Gravel | 0-20 | Small medium<br>stones through<br>profile | II |

# Appendix 5 Soil Pit Location



## Appendix 6

## Soil Pit Details

| Pit      | Texture                | Depth<br>cm | Colour                       | Munsell                 | Comments                                                                                                     | AP<br>WW | AP<br>Pots | Wetness | Grade      |
|----------|------------------------|-------------|------------------------------|-------------------------|--------------------------------------------------------------------------------------------------------------|----------|------------|---------|------------|
| А        | Sandy<br>Silty<br>Loam | 0-30        | Light<br>Brown               | Value 5<br>Chroma<br>4  | Larger<br>stones<br>greater<br>than 5%<br>rounded<br>few<br>mottles<br>fine to<br>medium<br>granular<br>peds | 110      | 94         | III     | 3 Div<br>1 |
| A<br>Sub | Clay<br>Loam           | 30-50       | Reddish,<br>Brown            | Value 6<br>Chroma<br>12 | Distinct boundary small and large stones 5- 10% coarse peds Fine Mottling. Gleyed at 50 Till at depth        |          |            |         |            |
| В        | Sandy<br>Silty<br>Loam | 0-40        | Light<br>Brown               | Value 5<br>Chroma<br>4  | Very<br>slightly<br>stoney,<br>medium<br>granular<br>peds, slight<br>mottling                                | 120      | 98         | II      | 2          |
| B<br>Sub | Clay<br>Loam           | 40-60       | Reddish<br>to light<br>Brown | Value 6<br>Chroma<br>12 | Slightly<br>stoney,<br>fine to<br>Medium to<br>angular<br>blocky<br>structure<br>no gleying                  |          |            |         |            |
| C<br>Top | Clay<br>loam           | 0-25        | Light<br>brown               | Value 5<br>Chroma<br>4  | Small to<br>medium<br>rounded<br>stones less<br>than 10%,<br>Medium to<br>fine<br>granular                   | 110      | 94         | III     | 3 Div<br>1 |

|     |        |       |           |         | peds.              |    |    |   |       |
|-----|--------|-------|-----------|---------|--------------------|----|----|---|-------|
|     |        |       |           |         | Distinct           |    |    |   |       |
|     |        |       |           |         | boundary           |    |    |   |       |
| С   | Coarse | 25-40 | light     | Value 7 | Small              |    |    |   |       |
| Sub | Sandy  |       | Brown to  | Chroma  | medium             |    |    |   |       |
|     | Silty  |       | reddish   | 10      | stones less        |    |    |   |       |
|     | Loam   |       | orange    |         | than 25%           |    |    |   |       |
|     |        |       |           |         | Moderately         |    |    |   |       |
|     |        |       |           |         | stoney             |    |    |   |       |
|     |        |       |           |         | Coarse to          |    |    |   |       |
|     |        |       |           |         | medium             |    |    |   |       |
|     |        | 0.00  |           |         | peds               |    |    |   | 0.51  |
| D   | Sandy  | 0-20  | Dark      | Value 4 | Small to           | 88 | 76 | П | 3 Div |
| Тор | Silty  |       | Reddish   | Chroma  | medium             |    |    |   | 2     |
|     | Loam   |       | Brown     | 4       | stones             |    |    |   |       |
|     |        |       |           |         | cobbly.            |    |    |   |       |
|     |        |       |           |         | Moderately to very |    |    |   |       |
|     |        |       |           |         | stoney.            |    |    |   |       |
|     |        |       |           |         | Fine to            |    |    |   |       |
|     |        |       |           |         | medium             |    |    |   |       |
|     |        |       |           |         | granular           |    |    |   |       |
|     |        |       |           |         | peds. Slight       |    |    |   |       |
|     |        |       |           |         | mottling           |    |    |   |       |
| D   | Sandy  | 20-40 | Orange to | Value 7 | Small to           |    |    |   |       |
| Sub | Silty  |       | Grey      | chroma  | medium             |    |    |   |       |
|     | Loam   |       | ,         | 10      | stones             |    |    |   |       |
|     |        |       |           |         | cobbly.            |    |    |   |       |
|     |        |       |           |         | Moderately         |    |    |   |       |
|     |        |       |           |         | to very            |    |    |   |       |
|     |        |       |           |         | stoney.            |    |    |   |       |
|     |        |       |           |         | Medium             |    |    |   |       |
|     |        |       |           |         | granular           |    |    |   |       |
|     |        |       |           |         | peds. Slight       |    |    |   |       |
|     |        |       |           |         | mottling           |    |    |   |       |
| E   | Sandy  | 0-20  |           | Value 6 | Small              |    |    |   | 4 Div |
| Тор | Silty  |       |           | Chroma  | stones.            |    |    |   | 1     |
|     | Loam   |       |           | 12      | Fine to            |    |    |   |       |
|     |        |       |           |         | medium             |    |    |   |       |
|     |        |       |           |         | granular           |    |    |   |       |
|     |        |       |           |         | peds. Distinct     |    |    |   |       |
|     |        |       |           |         | sub soi            |    |    |   |       |
|     |        |       |           |         | area               |    |    |   |       |
|     |        |       |           |         | defined by         |    |    |   |       |
|     |        |       |           |         | flat stones        |    |    |   |       |
|     |        |       |           |         | soil very          |    |    |   |       |
|     |        |       |           |         | shallow.           |    |    |   |       |
| 1   | 1      | İ     | 1         | İ       | Jilaliow.          | l  |    |   |       |

## Appendix 7 - Soil Pit Description

## Pit A Topsoil



Stones throughout profile small to medium, fine to medium granular peds, distinct sub soil boundary. Good root penetration.

### Pit A Subsoil



Distinct boundary medium to coarse angular blocky peds depth limited by stoney sub soil. Slight mottling with some gleying

### Pit B Topsoil



Fine to medium granular ped structure. Fine mottling with some stones small and medium in size. No stones. Roots throughout. De-stoning impacting on distribution.

Pit B Subsoil



Indistinct boundary. Slightly stoney, fine to medium to angular blocky structure no gleying.

## Pit C Topsoil



Small to medium rounded stones less than 10%, Medium to fine granular peds. Distinct sub soil boundary with plough pan. Less colour boundary change.

Pit C Subsoil



Small medium stones less than 25%. Moderately stoney. Coarse to medium peds. Distinct sub soil boundary coarse sandstone till.

## Pit D Topsoil



Small to medium stones cobbly. Moderately to very stoney. Fine to medium granular peds. Slight mottling. Stones a mix of rounded and sub rounded. Occasional flat stones present.

## Pit D Subsoil



Small to medium stones cobbly. Moderately to very stoney. Medium granular peds. Slight mottling. Limited cultivation depth.

## Pit E Topsoil



Small stones. Fine to medium granular peds. Distinct sub soil area defined by flat stones. Soil very shallow.

Pit E Subsoil



Solid rock comprised of flat stones, rounded and sub rounded.

#### Appendix 8 - Lab results

#### Pit A Topsoil

## Analysis Results (SOIL)

Customer P STEPHENSON

ARABLE ADVISOR 74 MIDDLETON RD PICKERING YO18 8NH Distributor MR P STEPHENSON

8

SWAINSEA HOUSE 74 MIDDLETON ROAD PICKERING NORTH YORKSHIRE

YO18 8NH

Sample Ref CARNOUSTIE A TOP Date Received 16/07/2024 ( Date Issued: 19/07/2024 )

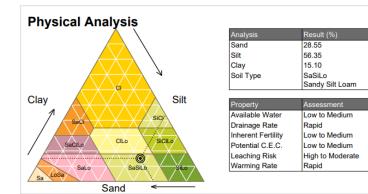
Sample No G093428/01 / CARNOUSTIE Area

Crop WHEAT

| Analysis                 | Result | Guideline | Interpretation | Comments                                                                                                                                                                                                                                                                        |
|--------------------------|--------|-----------|----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| рН                       | 5.9    | 6.5       | Low            | Low. An acidic environment will reduce soil nutrient availability and the efficiency of any applied fertilisers or organic materials.  A sub-optimum pH will also impact on soil microbial populations and rates of activity.  Refer to lime requirement.                       |
| Lime Req. (t/ha)         | 6.0    |           |                |                                                                                                                                                                                                                                                                                 |
| Phosphorus (ppm)         | 32     | 16        | High           | (Index 3) Adequate. Use soil analysis every 3-5 years to ensure level is maintained.                                                                                                                                                                                            |
| Potassium (ppm)          | 121    | 121       | Normal         | (Index 2) 85 kg/ha K2O (68 units/acre). Winter crop, straw removed. Maintenance.                                                                                                                                                                                                |
| Magnesium (ppm)          | 269    | 50        | High           | (Index 5) Possible interference with availability of Potassium.                                                                                                                                                                                                                 |
| Calcium (ppm)            | 1516   | 1600      | Slightly Low   | Low priority on this crop. Other crops may be affected.                                                                                                                                                                                                                         |
| Sulphur (ppm)            | 17     | 15        | Normal         | Adequate level.                                                                                                                                                                                                                                                                 |
| Boron (ppm)              | 0.82   | 1.60      | Low            | Consider treatment with boron.                                                                                                                                                                                                                                                  |
| Copper (ppm)             | 4.8    | 4.1       | Normal         | Adequate level.                                                                                                                                                                                                                                                                 |
| Iron (ppm)               | 1260   | 50        | Normal         | Adequate level.                                                                                                                                                                                                                                                                 |
| Manganese (ppm)          | 17     | 15        | Normal         | Adequate level.                                                                                                                                                                                                                                                                 |
| Molybdenum (ppm)         | 0.02   | 0.60      | Very Low       | Low priority on this crop. Other crops may be affected.                                                                                                                                                                                                                         |
| Sodium (ppm)             | 27     | 90        | Very Low       | Not a problem for this crop.                                                                                                                                                                                                                                                    |
| Zinc (ppm)               | 10.0   | 4.1       | Normal         | Adequate level.                                                                                                                                                                                                                                                                 |
| C.E.C. (meq/100g)        | 13.7   | 15.0      | Slightly Low   | Cation Exchange Capacity indicates a slightly low nutrient holding ability - soil applied nutrients could be readily leached. Where possible foliar applied nutrients should be recommended.                                                                                    |
| Organic Matter (LOI) (%) | 4.6    | 3.0       | Normal         | Good. Soils with medium to high levels of organic matter would generally be expected to have a good potential fertility and good structure, moisture retention and water infiltration. Ensure appropriate soil management practices are used to maintain organic matter levels. |

Sample Ref Sample No

Crop


P STEPHENSON CARNOUSTIE A TOP

G093428/01 / CARNOUSTIE WHEAT

MR P STEPHENSON

16/07/2024 ( Date Issued: 19/07/2024 )

8 Area



| Biological Analysis                                  | $\mathcal{S}$ 01 | LVITA® |
|------------------------------------------------------|------------------|--------|
| Analysis                                             | Result           | Ideal  |
| Solvita Burst CO2-C (ppm)                            | N/A              | >70    |
| Organic Carbon (%)                                   | N/A              |        |
| Total Nitrogen (%)                                   | N/A              |        |
| C:N Ratio                                            | N/A              | 10-12  |
| Calculated Parameters                                | Result           |        |
| Microbial Biomass (mg/kg)                            | N/A              |        |
| Solvita Potentially Mineralizable Nitrogen (kg N/ha) | N/A              |        |
| Soil Assessment Score                                | N/A/100          |        |

### Analysis Results (SOIL)

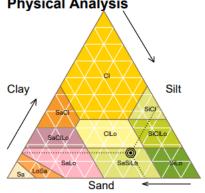
Distributor

**Date Received** 

Area

Customer

P STEPHENSON ARABLE ADVISOR 74 MIDDLETON RD PICKERING YO18 8NH


Sample Ref Sample No

Crop

CARNOUSTIE A TOP

G093428A/01 / CARNOUSTIE

**Physical Analysis** 



| Analysis         | Result (%)      |
|------------------|-----------------|
| Sand             | 28.56           |
| Silt             | 56.35           |
| Clay             | 15.09           |
| Very Fine Sand   | 11.60           |
| Fine Sand        | 11.08           |
| Medium Sand      | 5.52            |
| Coarse Sand      | 0.36            |
| Very Coarse Sand | < 0.01          |
| Stones >2mm      | 3.00            |
| Soil Type        | SaSiLo          |
|                  | Sandy Silt Loam |

MR P STEPHENSON SWAINSEA HOUSE 74 MIDDLETON ROAD PICKERING NORTH YORKSHIRE

16/07/2024 ( Date Issued: 19/07/2024 )

YO18 8NH

| Property           | Assessment       |
|--------------------|------------------|
| Available Water    | Low to Medium    |
| Drainage Rate      | Rapid            |
| Inherent Fertility | Low to Medium    |
| Potential C.E.C.   | Low to Medium    |
| Leaching Risk      | High to Moderate |
| Warming Rate       | Rapid            |

#### Pit A Subsoil

# Analysis Results (SOIL)

Customer

P STEPHENSON ARABLE ADVISOR 74 MIDDLETON RD **PICKERING** YO18 8NH

Distributor

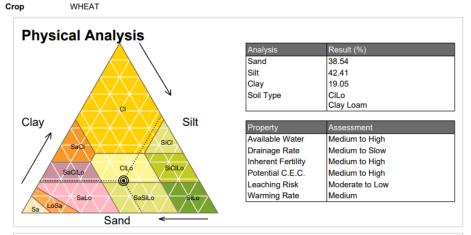
MR P STEPHENSON SWAINSEA HOUSE 74 MIDDLETON ROAD PICKERING NORTH YORKSHIRE YO18 8NH

Sample Ref CARNOUSTIE A SUB

Date Received 16/07/2024 ( Date Issued: 19/07/2024 )

G093428/02 / CARNOUSTIE Sample No

Area


Crop WHEAT

| Analysis                 | Result | Guideline | Interpretation | Comments                                                                                                                                                                                                                                                                        |
|--------------------------|--------|-----------|----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| рН                       | 6.7    | 6.5       | Normal         | Adequate level. Maintain pH to ensure optimum nutrient<br>nutrient availability and ideal conditions for an active soil<br>biology.                                                                                                                                             |
| Phosphorus (ppm)         | 14     | 16        | Low            | (Index 1) 85 kg/ha P2O5 (68 units/acre). Winter crop, straw removed.                                                                                                                                                                                                            |
| Potassium (ppm)          | 114    | 121       | Low            | (Index 1) 115 kg/ha K2O (92 units/acre). Winter crop, straw removed.                                                                                                                                                                                                            |
| Magnesium (ppm)          | 372    | 50        | High           | (Index 6) Possible interference with availability of Potassium.                                                                                                                                                                                                                 |
| Calcium (ppm)            | 1748   | 1600      | Normal         | Adequate level.                                                                                                                                                                                                                                                                 |
| Sulphur (ppm)            | 8      | 15        | Low            | PRIORITY FOR TREATMENT.                                                                                                                                                                                                                                                         |
| Boron (ppm)              | 0.56   | 1.60      | Very Low       | Consider treatment with boron.                                                                                                                                                                                                                                                  |
| Copper (ppm)             | 3.1    | 4.1       | Slightly Low   | PRIORITY FOR TREATMENT.                                                                                                                                                                                                                                                         |
| Iron (ppm)               | 630    | 50        | Normal         | Adequate level.                                                                                                                                                                                                                                                                 |
| Manganese (ppm)          | 31     | 55        | Low            | PRIORITY FOR TREATMENT.                                                                                                                                                                                                                                                         |
| Molybdenum (ppm)         | 0.04   | 0.40      | Very Low       | Low priority on this crop. Other crops may be affected.                                                                                                                                                                                                                         |
| Sodium (ppm)             | 28     | 90        | Very Low       | Not a problem for this crop.                                                                                                                                                                                                                                                    |
| Zinc (ppm)               | 10.7   | 4.1       | Normal         | Adequate level.                                                                                                                                                                                                                                                                 |
| C.E.C. (meq/100g)        | 14.8   | 15.0      | Slightly Low   | Cation Exchange Capacity indicates a slightly low nutrient holding ability - soil applied nutrients could be readily leached. Where possible foliar applied nutrients should be recommended.                                                                                    |
| Organic Matter (LOI) (%) | 3.7    | 3.0       | Normal         | Good. Soils with medium to high levels of organic matter would generally be expected to have a good potential fertility and good structure, moisture retention and water infiltration. Ensure appropriate soil management practices are used to maintain organic matter levels. |

P STEPHENSON Distributor MR P STEPHENSON Customer

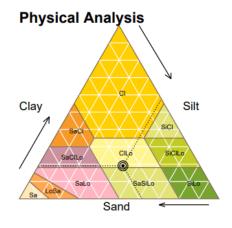
CARNOUSTIE A SUB 16/07/2024 ( Date Issued: 19/07/2024 ) Sample Ref **Date Received** 8

G093428/02 / CARNOUSTIE Sample No Area



| Biological Analysis                                  | $\mathcal{S}$ 01 | LVITA® |
|------------------------------------------------------|------------------|--------|
| Analysis                                             | Result           | Ideal  |
| Solvita Burst CO2-C (ppm)                            | N/A              | >70    |
| Organic Carbon (%)                                   | N/A              |        |
| Total Nitrogen (%)                                   | N/A              |        |
| C:N Ratio                                            | N/A              | 10-12  |
| Calculated Parameters                                | Result           |        |
| Microbial Biomass (mg/kg)                            | N/A              |        |
| Solvita Potentially Mineralizable Nitrogen (kg N/ha) | N/A              |        |
| Soil Assessment Score                                | N/A/100          |        |

### Analysis Results (SOIL)


Distributor Customer

P STEPHENSON ARABLE ADVISOR 74 MIDDLETON RD MR P STEPHENSON SWAINSEA HOUSE 74 MIDDLETON ROAD PICKERING YO18 8NH PICKERING NORTH YORKSHIRE

YO18 8NH

CARNOUSTIE A SUB 16/07/2024 ( Date Issued: 19/07/2024 ) Sample Ref Date Received 8

Sample No G093428A/02 / CARNOUSTIE Area Crop



| Analysis         | Result (%) |
|------------------|------------|
| Sand             | 38.54      |
| Silt             | 42.41      |
| Clay             | 19.05      |
| Very Fine Sand   | 11.43      |
| Fine Sand        | 15.14      |
| Medium Sand      | 10.59      |
| Coarse Sand      | 1.38       |
| Very Coarse Sand | < 0.01     |
| Stones >2mm      | 7.40       |
| Soil Type        | CILo       |
|                  | Clay Loam  |

| Property           | Assessment      |
|--------------------|-----------------|
| Available Water    | Medium to High  |
| Drainage Rate      | Medium to Slow  |
| Inherent Fertility | Medium to High  |
| Potential C.E.C.   | Medium to High  |
| Leaching Risk      | Moderate to Low |
| Warming Rate       | Medium          |

#### Pit B Topsoil

# Analysis Results (SOIL)

P STEPHENSON Customer

ARABLE ADVISOR 74 MIDDLETON RD PICKERING YO18 8NH

Distributor MR P STEPHENSON

MR P STEPHENSON SWAINSEA HOUSE 74 MIDDLETON ROAD PICKERING NORTH YORKSHIRE YO18 8NH

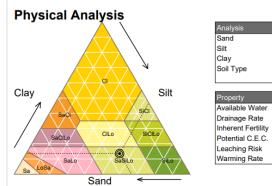
Sample Ref CARNOUSTIE B TOP **Date Received** 16/07/2024 ( Date Issued: 19/07/2024 )

Sample No G093428/03 / CARNOUSTIE

**POTATOES** Crop

| Analysis                 | Result | Guideline | Interpretation | Comments                                                                                                                                                                                                                                                                        |
|--------------------------|--------|-----------|----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| рН                       | 6.2    | 6.5       | Slightly Low   | Slightly low. An acidic environment will reduce soil nutrient availability and the efficiency of any applied fertilisers or organic materials.  A sub optimum pH will also impact on soil microbial populations and rates of activity.  Refer to lime requirement.              |
| Phosphorus (ppm)         | 50     | 16        | Very High      | (Index 4) Possible interference with availability from the soil of Fe,Cu,Zn.                                                                                                                                                                                                    |
| Potassium (ppm)          | 235    | 121       | Normal         | (Index 2) 300 kg/ha K2O (240 units/acre).                                                                                                                                                                                                                                       |
| Magnesium (ppm)          | 223    | 51        | Very High      | (Index 4) Possible interference with the availability of Potassium.                                                                                                                                                                                                             |
| Calcium (ppm)            | 1728   | 2000      | Slightly Low   | CONSIDER TREATMENT.                                                                                                                                                                                                                                                             |
| Sulphur (ppm)            | 11     | 10        | Normal         | Adequate level.                                                                                                                                                                                                                                                                 |
| Boron (ppm)              | 0.97   | 1.60      | Low            | CONSIDER TREATMENT.                                                                                                                                                                                                                                                             |
| Copper (ppm)             | 3.0    | 2.1       | Normal         | Adequate level.                                                                                                                                                                                                                                                                 |
| Iron (ppm)               | 916    | 200       | Normal         | Adequate level.                                                                                                                                                                                                                                                                 |
| Manganese (ppm)          | 19     | 30        | Low            | PRIORITY FOR TREATMENT.                                                                                                                                                                                                                                                         |
| Molybdenum (ppm)         | 0.04   | 0.60      | Very Low       | Low priority on this crop. Other crops may be affected.                                                                                                                                                                                                                         |
| Sodium (ppm)             | 31     | 90        | Very Low       | Not a problem for this crop.                                                                                                                                                                                                                                                    |
| Zinc (ppm)               | 4.5    | 4.1       | Normal         | Adequate level.                                                                                                                                                                                                                                                                 |
| C.E.C. (meq/100g)        | 13.5   | 15.0      | Slightly Low   | Cation Exchange Capacity indicates a slightly low nutrient holding ability - soil applied nutrients could be readily leached. Where possible foliar applied nutrients should be recommended.                                                                                    |
| Organic Matter (LOI) (%) | 5.3    | 3.0       | Normal         | Good. Soils with medium to high levels of organic matter would generally be expected to have a good potential fertility and good structure, moisture retention and water infiltration. Ensure appropriate soil management practices are used to maintain organic matter levels. |
| Organic Carbon (LOI) (%) | 3.1    |           |                |                                                                                                                                                                                                                                                                                 |

Customer Sample Ref Sample No


Crop

P STEPHENSON CARNOUSTIE B TOP

G093428/03 / CARNOUSTIE **POTATOES** 

Distributor MR P STEPHENSON

16/07/2024 ( Date Issued: 19/07/2024 ) Date Received



| Arialysis                           | Result (%)             |
|-------------------------------------|------------------------|
| Sand                                | 33.26                  |
| Silt                                | 53.17                  |
| Clay                                | 13.57                  |
| Soil Type                           | SaSiLo                 |
|                                     | Sandy Silt Loam        |
|                                     | •                      |
| Property                            | Assessment             |
| Available Water                     | Low to Medium          |
| Available vvaler                    | LOW to Medium          |
| Drainage Rate                       | Rapid                  |
| Drainage Rate                       |                        |
|                                     | Rapid                  |
| Drainage Rate<br>Inherent Fertility | Rapid<br>Low to Medium |

| Biological Analysis                                  | Sol     | LVITA® |
|------------------------------------------------------|---------|--------|
| Analysis                                             | Result  | Ideal  |
| Solvita Burst CO2-C (ppm)                            | N/A     | >70    |
| Organic Carbon (%)                                   | N/A     |        |
| Total Nitrogen (%)                                   | N/A     |        |
| C:N Ratio                                            | N/A     | 10-12  |
| Calculated Parameters                                | Result  |        |
| Microbial Biomass (mg/kg)                            | N/A     |        |
| Solvita Potentially Mineralizable Nitrogen (kg N/ha) | N/A     |        |
| Soil Assessment Score                                | N/A/100 |        |

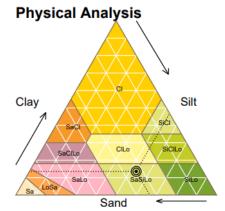
## Analysis Results (SOIL)

Customer

Crop

P STEPHENSON ARABLE ADVISOR 74 MIDDLETON RD PICKERING YO18 8NH

CARNOUSTIE B TOP Sample Ref Sample No


G093428A/03 / CARNOUSTIE

Distributor

MR P STEPHENSON SWAINSEA HOUSE 74 MIDDLETON ROAD PICKERING NORTH YORKSHIRE YO18 8NH

16/07/2024 ( Date Issued: 19/07/2024 )

**Date Received** Area



| Analysis         | Result (%)      |
|------------------|-----------------|
| Sand             | 33.26           |
| Silt             | 53.17           |
| Clay             | 13.57           |
| Very Fine Sand   | 11.81           |
| Fine Sand        | 13.29           |
| Medium Sand      | 7.51            |
| Coarse Sand      | 0.64            |
| Very Coarse Sand | < 0.01          |
| Stones >2mm      | 8.10            |
| Soil Type        | SaSiLo          |
|                  | Sandy Silt Loam |

| Property           | Assessment       |
|--------------------|------------------|
| Available Water    | Low to Medium    |
| Drainage Rate      | Rapid            |
| Inherent Fertility | Low to Medium    |
| Potential C.E.C.   | Low to Medium    |
| Leaching Risk      | High to Moderate |
| Warming Rate       | Rapid            |

#### Pit B Subsoil

## Analysis Results (SOIL)

Customer P STEPHENSON

ARABLE ADVISOR 74 MIDDLETON RD PICKERING

YO18 8NH

Distributor MR P STEPHENSON

SWAINSEA HOUSE 74 MIDDLETON ROAD

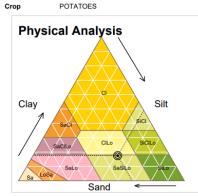
PICKERING NORTH YORKSHIRE

YO18 8NH

Sample Ref CARNOUSTIE B SUB

Date Received 16/07/2024 ( Date Issued: 19/07/2024 )
Area 14

Sample No G093428/04 / CARNOUSTIE


Crop POTATOES

| Analysis                 | Result | Guideline | Interpretation | Comments                                                                                                                                                                                                                                                                                                   |
|--------------------------|--------|-----------|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| рН                       | 6.2    | 6.5       | Slightly Low   | Slightly low. An acidic environment will reduce soil nutrient availability and the efficiency of any applied fertilisers or organic materials.  A sub optimum pH will also impact on soil microbial populations and rates of activity.  Refer to lime requirement.                                         |
| Phosphorus (ppm)         | 12     | 16        | Low            | (Index 1) 210 kg/ha P2O5 (168 units/acre).                                                                                                                                                                                                                                                                 |
| Potassium (ppm)          | 126    | 121       | Normal         | (Index 2) 300 kg/ha K2O (240 units/acre).                                                                                                                                                                                                                                                                  |
| Magnesium (ppm)          | 208    | 51        | Very High      | (Index 4) Possible interference with the availability of Potassium.                                                                                                                                                                                                                                        |
| Calcium (ppm)            | 1421   | 2000      | Low            | CONSIDER TREATMENT.                                                                                                                                                                                                                                                                                        |
| Sulphur (ppm)            | 7      | 10        | Low            | CONSIDER TREATMENT.                                                                                                                                                                                                                                                                                        |
| Boron (ppm)              | 0.65   | 1.60      | Very Low       | CONSIDER TREATMENT.                                                                                                                                                                                                                                                                                        |
| Copper (ppm)             | 2.3    | 2.1       | Normal         | Adequate level.                                                                                                                                                                                                                                                                                            |
| Iron (ppm)               | 497    | 200       | Normal         | Adequate level.                                                                                                                                                                                                                                                                                            |
| Manganese (ppm)          | 14     | 30        | Very Low       | PRIORITY FOR TREATMENT.                                                                                                                                                                                                                                                                                    |
| Molybdenum (ppm)         | 0.03   | 0.60      | Very Low       | Low priority on this crop. Other crops may be affected.                                                                                                                                                                                                                                                    |
| Sodium (ppm)             | 27     | 90        | Very Low       | Not a problem for this crop.                                                                                                                                                                                                                                                                               |
| Zinc (ppm)               | 3.2    | 4.1       | Slightly Low   | Low priority on this crop. Other crops may be affected.                                                                                                                                                                                                                                                    |
| C.E.C. (meq/100g)        | 11.6   | 15.0      | Slightly Low   | Cation Exchange Capacity indicates a slightly low nutrient holding ability - soil applied nutrients could be readily leached. Where possible foliar applied nutrients should be recommended.                                                                                                               |
| Organic Matter (LOI) (%) | 2.5    | 3.0       | Slightly Low   | Slightly low. Soils with medium to high levels of organic matter would generally be expected to have a good potential fertility and good structure, moisture retention and water infiltration. Investigate soil conditions to establish if soil management practices can improve levels of organic matter. |
| Organic Carbon (LOI) (%) | 1.4    |           |                |                                                                                                                                                                                                                                                                                                            |

Customer Sample Ref Sample No

P STEPHENSON CARNOUSTIE B SUB G093428/04 / CARNOUSTIE POTATOES Distributor MR P STEPHENSON 14

16/07/2024 ( Date Issued: 19/07/2024 ) **Date Received** 



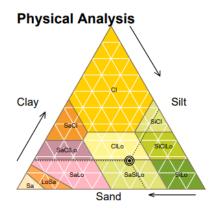
| Analysis  | Result (%)      |  |
|-----------|-----------------|--|
| Sand      | 31.49           |  |
| Silt      | 51.03           |  |
| Clay      | 17.48           |  |
| Soil Type | SaSiLo          |  |
|           | Sandy Silt Loam |  |

| Property           | Assessment       |  |
|--------------------|------------------|--|
| Available Water    | Low to Medium    |  |
| Drainage Rate      | Rapid            |  |
| Inherent Fertility | Low to Medium    |  |
| Potential C.E.C.   | Low to Medium    |  |
| Leaching Risk      | High to Moderate |  |
| Warming Rate       | Rapid            |  |

| Biological Analysis                                  | $\mathcal{S}$ 01 | .VITA° |
|------------------------------------------------------|------------------|--------|
| Analysis                                             | Result           | Ideal  |
| Solvita Burst CO2-C (ppm)                            | N/A              | >70    |
| Organic Carbon (%)                                   | N/A              |        |
| Total Nitrogen (%)                                   | N/A              |        |
| C:N Ratio                                            | N/A              | 10-12  |
| Calculated Parameters                                | Result           |        |
| Microbial Biomass (mg/kg)                            | N/A              |        |
| Solvita Potentially Mineralizable Nitrogen (kg N/ha) | N/A              |        |
| Soil Assessment Score                                | N/A/100          |        |

### Analysis Results (SOIL)

Customer


P STEPHENSON ARABLE ADVISOR 74 MIDDLETON RD PICKERING YO18 8NH

Sample Ref CARNOUSTIE B SUB Sample No G093428A/04 / CARNOUSTIE Crop

Distributor

MR P STEPHENSON SWAINSEA HOUSE 74 MIDDLETON ROAD PICKERING NORTH YORKSHIRE YO18 8NH

**Date Received** 16/07/2024 ( Date Issued: 19/07/2024 )



| Analysis         | Result (%)      |
|------------------|-----------------|
| Sand             | 31.50           |
| Silt             | 51.03           |
| Clay             | 17.47           |
| Very Fine Sand   | 11.63           |
| Fine Sand        | 12.38           |
| Medium Sand      | 6.90            |
| Coarse Sand      | 0.06            |
| Very Coarse Sand | < 0.01          |
| Stones >2mm      | 5.50            |
| Soil Type        | SaSiLo          |
|                  | Sandy Silt Loam |

| Property           | Assessment       |
|--------------------|------------------|
| Available Water    | Low to Medium    |
| Drainage Rate      | Rapid            |
| Inherent Fertility | Low to Medium    |
| Potential C.E.C.   | Low to Medium    |
| Leaching Risk      | High to Moderate |
| Warming Rate       | Rapid            |

#### Pit C Topsoil

Crop

# Analysis Results (SOIL)

P STEPHENSON Customer

ARABLE ADVISOR 74 MIDDLETON RD

PICKERING YO18 8NH

Distributor MR P STEPHENSON

SWAINSEA HOUSE 74 MIDDLETON ROAD

**PICKERING** 

NORTH YORKSHIRE

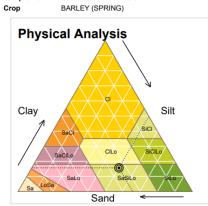
YO18 8NH

Sample Ref CARNOUSTIE C TOP

G093428/05 / CARNOUSTIE

Sample No BARLEY (SPRING) Date Received 16/07/2024 ( Date Issued: 19/07/2024 )

Area 12


| Analysis                 | Result | Guideline | Interpretation | Comments                                                                                                                                                                                                                                                                        |
|--------------------------|--------|-----------|----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| рН                       | 6.2    | 6.5       | Slightly Low   | Slightly low. An acidic environment will reduce soil nutrient availability and the efficiency of any applied fertilisers or organic materials.  A sub optimum pH will also impact on soil microbial populations and rates of activity.  Refer to lime requirement.              |
| Lime Req. (t/ha)         | 4.0    |           |                |                                                                                                                                                                                                                                                                                 |
| Phosphorus (ppm)         | 34     | 16        | High           | (Index 3) Adequate. Use soil analysis every 3-5 years to ensure level is maintained.                                                                                                                                                                                            |
| Potassium (ppm)          | 131    | 121       | Normal         | (Index 2) 65 kg/ha K2O (52 units/acre).                                                                                                                                                                                                                                         |
| Magnesium (ppm)          | 269    | 50        | Normal         | (Index 5) Adequate level.                                                                                                                                                                                                                                                       |
| Calcium (ppm)            | 1553   | 1600      | Slightly Low   | Low priority on this crop. Other crops may be affected.                                                                                                                                                                                                                         |
| Sulphur (ppm)            | 11     | 10        | Normal         | Adequate level.                                                                                                                                                                                                                                                                 |
| Boron (ppm)              | 0.75   | 1.60      | Very Low       | Consider treatment with Boron.                                                                                                                                                                                                                                                  |
| Copper (ppm)             | 3.3    | 4.1       | Slightly Low   | PRIORITY FOR TREATMENT.                                                                                                                                                                                                                                                         |
| Iron (ppm)               | 1384   | 50        | Normal         | Adequate level.                                                                                                                                                                                                                                                                 |
| Manganese (ppm)          | 29     | 30        | Slightly Low   | PRIORITY FOR TREATMENT.                                                                                                                                                                                                                                                         |
| Molybdenum (ppm)         | 0.03   | 0.60      | Very Low       | Low priority on this crop. Other crops may be affected.                                                                                                                                                                                                                         |
| Sodium (ppm)             | 29     | 90        | Very Low       | Low priority on this crop. Other crops may be affected.                                                                                                                                                                                                                         |
| Zinc (ppm)               | 6.2    | 4.1       | Normal         | Adequate level.                                                                                                                                                                                                                                                                 |
| C.E.C. (meq/100g)        | 12.7   | 15.0      | Slightly Low   | Cation Exchange Capacity indicates a slightly low nutrient holding ability - soil applied nutrients could be readily leached. Where possible foliar applied nutrients should be recommended.                                                                                    |
| Organic Matter (LOI) (%) | 3.8    | 3.0       | Normal         | Good. Soils with medium to high levels of organic matter would generally be expected to have a good potential fertility and good structure, moisture retention and water infiltration. Ensure appropriate soil management practices are used to maintain organic matter levels. |
| Organic Carbon (LOI) (%) | 2.2    |           |                |                                                                                                                                                                                                                                                                                 |

Customer Sample Ref Sample No

P STEPHENSON CARNOUSTIE C TOP G093428/05 / CARNOUSTIE Distributor MR P STEPHENSON 12

Date Received 16/07/2024 ( Date Issued: 19/07/2024 )

Area



| Analysis  | Result (%)      |
|-----------|-----------------|
| Sand      | 34.22           |
| Silt      | 50.09           |
| Clay      | 15.69           |
| Soil Type | SaSiLo          |
|           | Sandy Silt Loam |

| Property           | Assessment       |
|--------------------|------------------|
| Available Water    | Low to Medium    |
| Drainage Rate      | Rapid            |
| Inherent Fertility | Low to Medium    |
| Potential C.E.C.   | Low to Medium    |
| Leaching Risk      | High to Moderate |
| Warming Rate       | Rapid            |

| Biological Analysis                                  | $\mathcal{S}$ OL | VITA® |
|------------------------------------------------------|------------------|-------|
| Analysis                                             | Result           | Ideal |
| Solvita Burst CO2-C (ppm)                            | N/A              | >70   |
| Organic Carbon (%)                                   | N/A              |       |
| Total Nitrogen (%)                                   | N/A              |       |
| C:N Ratio                                            | N/A              | 10-12 |
| Calculated Parameters                                | Result           |       |
| Microbial Biomass (mg/kg)                            | N/A              |       |
| Solvita Potentially Mineralizable Nitrogen (kg N/ha) | N/A              |       |
| Soil Assessment Score                                | N/A/100          |       |

#### Analysis Results (SOIL)

Customer

P STEPHENSON ARABLE ADVISOR 74 MIDDLETON RD PICKERING YO18 8NH

G093428A/05 / CARNOUSTIE

CARNOUSTIE C TOP Sample Ref

Sample No Crop

Distributor

MR P STEPHENSON SWAINSEA HOUSE 74 MIDDLETON ROAD PICKERING NORTH YORKSHIRE YO18 8NH

Date Received 16/07/2024 ( Date Issued: 19/07/2024 )

12



| Analysis         | Result (%)      |
|------------------|-----------------|
| Sand             | 34.19           |
| Silt             | 50.12           |
| Clay             | 15.69           |
| Very Fine Sand   | 9.95            |
| Fine Sand        | 12.92           |
| Medium Sand      | 8.46            |
| Coarse Sand      | 2.76            |
| Very Coarse Sand | 0.10            |
| Stones >2mm      | 1.80            |
| Soil Type        | SaSiLo          |
|                  | Sandy Silt Loam |

| Property           | Assessment       |
|--------------------|------------------|
| Available Water    | Low to Medium    |
| Drainage Rate      | Rapid            |
| Inherent Fertility | Low to Medium    |
| Potential C.E.C.   | Low to Medium    |
| Leaching Risk      | High to Moderate |
| Warming Rate       | Rapid            |

#### Pit C Subsoil

Sample No

# Analysis Results (SOIL)

Customer P STEPHENSON

ARABLE ADVISOR 74 MIDDLETON RD

PICKERING YO18 8NH

Distributor MR P STEPHENSON

12

SWAINSEA HOUSE 74 MIDDLETON ROAD

PICKERING

NORTH YORKSHIRE

Date Received 16/07/2024 ( Date Issued: 19/07/2024 )

YO18 8NH

Sample Ref CARNOUSTIE C SUB

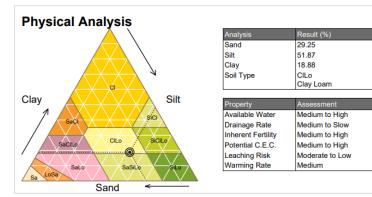
G093428/06 / CARNOUSTIE

Area

BARLEY (SPRING) Crop

| Analysis                 | Result | Guideline | Interpretation | Comments                                                                                                                                                                                                                                                                                                   |
|--------------------------|--------|-----------|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| рН                       | 6.3    | 6.5       | Slightly Low   | Slightly low. An acidic environment will reduce soil nutrient availability and the efficiency of any applied fertilisers or organic materials.  A sub optimum pH will also impact on soil microbial populations and rates of activity.  Refer to lime requirement.                                         |
| Lime Req. (t/ha)         | 3.0    |           |                |                                                                                                                                                                                                                                                                                                            |
| Phosphorus (ppm)         | 25     | 16        | Normal         | (Index 2) 45 kg/ha P2O5 (36 units/acre). Maintenance.                                                                                                                                                                                                                                                      |
| Potassium (ppm)          | 120    | 121       | Low            | (Index 1) 95 kg/ha K2O (76 units/acre).                                                                                                                                                                                                                                                                    |
| Magnesium (ppm)          | 272    | 50        | Normal         | (Index 5) Adequate level.                                                                                                                                                                                                                                                                                  |
| Calcium (ppm)            | 1594   | 1600      | Slightly Low   | Low priority on this crop. Other crops may be affected.                                                                                                                                                                                                                                                    |
| Sulphur (ppm)            | 7      | 10        | Low            | CONSIDER TREATMENT.                                                                                                                                                                                                                                                                                        |
| Boron (ppm)              | 0.60   | 1.60      | Very Low       | Consider treatment with Boron.                                                                                                                                                                                                                                                                             |
| Copper (ppm)             | 3.0    | 4.1       | Low            | PRIORITY FOR TREATMENT.                                                                                                                                                                                                                                                                                    |
| Iron (ppm)               | 1358   | 50        | Normal         | Adequate level.                                                                                                                                                                                                                                                                                            |
| Manganese (ppm)          | 35     | 35        | Normal         | Adequate level.                                                                                                                                                                                                                                                                                            |
| Molybdenum (ppm)         | 0.03   | 0.60      | Very Low       | Low priority on this crop. Other crops may be affected.                                                                                                                                                                                                                                                    |
| Sodium (ppm)             | 27     | 90        | Very Low       | Low priority on this crop. Other crops may be affected.                                                                                                                                                                                                                                                    |
| Zinc (ppm)               | 5.9    | 4.1       | Normal         | Adequate level.                                                                                                                                                                                                                                                                                            |
| C.E.C. (meq/100g)        | 12.9   | 15.0      | Slightly Low   | Cation Exchange Capacity indicates a slightly low nutrient holding ability - soil applied nutrients could be readily leached. Where possible foliar applied nutrients should be recommended.                                                                                                               |
| Organic Matter (LOI) (%) | 2.5    | 3.0       | Slightly Low   | Slightly low. Soils with medium to high levels of organic matter would generally be expected to have a good potential fertility and good structure, moisture retention and water infiltration. Investigate soil conditions to establish if soil management practices can improve levels of organic matter. |
| Organic Carbon (LOI) (%) | 1.4    |           |                |                                                                                                                                                                                                                                                                                                            |

P STEPHENSON Sample Ref CARNOUSTIE C SUB Sample No


Crop

G093428/06 / CARNOUSTIE BARLEY (SPRING)

MR P STEPHENSON

Date Received 16/07/2024 ( Date Issued: 19/07/2024 )

Area 12

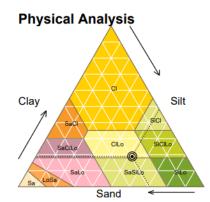


| Biological Analysis                                  | $\mathcal{S}$ olvita $^{\circ}$ |       |
|------------------------------------------------------|---------------------------------|-------|
| Analysis                                             | Result                          | Ideal |
| Solvita Burst CO2-C (ppm)                            | N/A                             | >70   |
| Organic Carbon (%)                                   | N/A                             |       |
| Total Nitrogen (%)                                   | N/A                             |       |
| C:N Ratio                                            | N/A                             | 10-12 |
| Calculated Parameters                                | Result                          |       |
| Microbial Biomass (mg/kg)                            | N/A                             |       |
| Solvita Potentially Mineralizable Nitrogen (kg N/ha) | N/A                             |       |
| Soil Assessment Score                                | N/A/100                         |       |

### Analysis Results (SOIL)

Customer

P STEPHENSON ARABLE ADVISOR 74 MIDDLETON RD PICKERING YO18 8NH


Sample Ref

CARNOUSTIE C SUB Sample No G093428A/06 / CARNOUSTIE Crop

Distributor

MR P STEPHENSON SWAINSEA HOUSE 74 MIDDLETON ROAD PICKERING NORTH YORKSHIRE YO18 8NH

**Date Received** 16/07/2024 ( Date Issued: 19/07/2024 )



| Analysis         | Result (%) |
|------------------|------------|
| Sand             | 29.24      |
| Silt             | 51.87      |
| Clay             | 18.89      |
| Very Fine Sand   | 10.85      |
| Fine Sand        | 12.77      |
| Medium Sand      | 5.55       |
| Coarse Sand      | 0.07       |
| Very Coarse Sand | < 0.01     |
| Stones >2mm      | 1.20       |
| Soil Type        | CILo       |
|                  | Clay Loam  |

| Property           | Assessment      |
|--------------------|-----------------|
| Available Water    | Medium to High  |
| Drainage Rate      | Medium to Slow  |
| Inherent Fertility | Medium to High  |
| Potential C.E.C.   | Medium to High  |
| Leaching Risk      | Moderate to Low |
| Warming Rate       | Medium          |

#### Pit D Topsoil

## Analysis Results (SOIL)

Customer

P STEPHENSON ARABLE ADVISOR 74 MIDDLETON RD **PICKERING** YO18 8NH

Distributor

MR P STEPHENSON SWAINSEA HOUSE 74 MIDDLETON ROAD

**PICKERING** NORTH YORKSHIRE

YO18 8NH

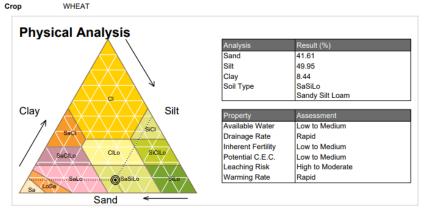
Sample Ref CARNOUSTIE D TOP Date Received 16/07/2024 ( Date Issued: 19/07/2024 )

G093428/07 / CARNOUSTIE Sample No Area

Crop WHEAT

| Analysis                 | Result | Guideline | Interpretation | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|--------------------------|--------|-----------|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| рН                       | 7.0    | 6.5       | Normal         | Adequate level. Maintain pH to ensure optimum nutrient<br>nutrient availability and ideal conditions for an active soil<br>biology.                                                                                                                                                                                                                                                                                                                                              |
| Phosphorus (ppm)         | 47     | 16        | Very High      | (Index 4) Possible interference with availability of Fe,Cu,Zn.                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Potassium (ppm)          | 221    | 121       | Normal         | (Index 2) 55 kg/ha K2O (44 units/acre). Winter crop straw removed. Maintenance.                                                                                                                                                                                                                                                                                                                                                                                                  |
| Magnesium (ppm)          | 293    | 50        | High           | (Index 5) Possible interference with availability of Potassium.                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Calcium (ppm)            | 2101   | 1600      | Normal         | Adequate level.                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Sulphur (ppm)            | 23     | 15        | Normal         | Adequate level.                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Boron (ppm)              | 1.19   | 1.60      | Low            | Consider treatment with boron.                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Copper (ppm)             | 6.0    | 4.1       | Normal         | Adequate level.                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Iron (ppm)               | 696    | 50        | Normal         | Adequate level.                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Manganese (ppm)          | 60     | 70        | Slightly Low   | PRIORITY FOR TREATMENT.                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Molybdenum (ppm)         | 0.03   | 0.30      | Very Low       | Low priority on this crop. Other crops may be affected.                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Sodium (ppm)             | 30     | 90        | Very Low       | Not a problem for this crop.                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Zinc (ppm)               | 6.5    | 4.1       | Normal         | Adequate level.                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| C.E.C. (meq/100g)        | 15.5   | 15.0      | Normal         | Cation Exchange Capacity indicates a soil with a good<br>nutrient holding ability.                                                                                                                                                                                                                                                                                                                                                                                               |
| Organic Matter (LOI) (%) | 6.3    | 3.0       | Normal         | Good. Soils with medium to high levels of organic matter would generally be expected to have a good potential fertility and good structure, moisture retention and water infiltration. Ensure appropriate soil management practices are used to maintain organic matter levels.                                                                                                                                                                                                  |
| Organic Carbon (LOI) (%) | 3.6    | 1.7       | Normal         | Normal (See Organic Matter comment).  Organic carbon is the measurable component of organic matter. Organic carbon and organic matter can be broken into distinct 'pools'. These pools include labile/active (particulate, almost entirely decomposed, readily available microbe foodsource), humus carbon (decomposing carbon) and recalcitrant organic carbon (resistant to decomposition). Each of these pools are involved in different soil processes (see: Active Carbon). |

P STEPHENSON Customer Sample Ref


Sample No

CARNOUSTIE D TOP

G093428/07 / CARNOUSTIE WHEAT

Distributor MR P STEPHENSON

Date Received 16/07/2024 ( Date Issued: 19/07/2024 )



| Biological Analysis                                  | SOI     | VITA* |
|------------------------------------------------------|---------|-------|
| Analysis                                             | Result  | Ideal |
| Solvita Burst CO2-C (ppm)                            | N/A     | >70   |
| Organic Carbon (%)                                   | N/A     |       |
| Total Nitrogen (%)                                   | N/A     |       |
| C:N Ratio                                            | N/A     | 10-12 |
| Calculated Parameters                                | Result  |       |
| Microbial Biomass (mg/kg)                            | N/A     |       |
| Solvita Potentially Mineralizable Nitrogen (kg N/ha) | N/A     |       |
| Soil Assessment Score                                | N/A/100 |       |

### Analysis Results (SOIL)

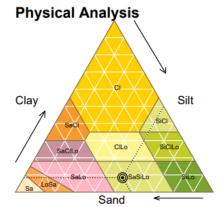
Customer

P STEPHENSON ARABLE ADVISOR 74 MIDDLETON RD PICKERING

YO18 8NH

Sample Ref G093428A/07 / CARNOUSTIE

Sample No Crop


CARNOUSTIE D TOP

Distributor

MR P STEPHENSON SWAINSEA HOUSE 74 MIDDLETON ROAD PICKERING NORTH YORKSHIRE YO18 8NH

16/07/2024 ( Date Issued: 19/07/2024 ) **Date Received** 

Area



| Analysis         | Result (%)      |
|------------------|-----------------|
| Sand             | 41.61           |
| Silt             | 49.95           |
| Clay             | 8.44            |
| Very Fine Sand   | 17.93           |
| Fine Sand        | 16.27           |
| Medium Sand      | 7.24            |
| Coarse Sand      | 0.17            |
| Very Coarse Sand | < 0.01          |
| Stones >2mm      | 11.90           |
| Soil Type        | SaSiLo          |
|                  | Sandy Silt Loam |

| Property           | Assessment       |
|--------------------|------------------|
| Available Water    | Low to Medium    |
| Drainage Rate      | Rapid            |
| Inherent Fertility | Low to Medium    |
| Potential C.E.C.   | Low to Medium    |
| Leaching Risk      | High to Moderate |
| Warming Rate       | Rapid            |

#### Pit D Subsoil

# Analysis Results (SOIL)

Customer P STEPHENSON

ARABLE ADVISOR 74 MIDDLETON RD **PICKERING** 

YO18 8NH

Distributor MR P STEPHENSON

SWAINSEA HOUSE 74 MIDDLETON ROAD

PICKERING NORTH YORKSHIRE

YO18 8NH

Sample Ref CARNOUSTIE D SUB

Date Received 16/07/2024 ( Date Issued: 19/07/2024 )

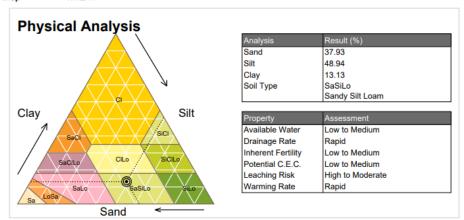
Sample No

G093428/08 / CARNOUSTIE

8 Area

Crop WHEAT

| Analysis                 | Result | Guideline | Interpretation | Comments                                                                                                                                                                                                                                                                        |
|--------------------------|--------|-----------|----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| рН                       | 7.1    | 6.5       | Normal         | Adequate level. Maintain pH to ensure optimum nutrient<br>nutrient availability and ideal conditions for an active soil<br>biology.                                                                                                                                             |
| Phosphorus (ppm)         | 35     | 16        | High           | (Index 3) Adequate. Use soil analysis every 3-5 years to ensure level is maintained.                                                                                                                                                                                            |
| Potassium (ppm)          | 138    | 121       | Normal         | (Index 2) 85 kg/ha K2O (68 units/acre). Winter crop, straw removed. Maintenance.                                                                                                                                                                                                |
| Magnesium (ppm)          | 244    | 50        | High           | (Index 4) Possible interference with availability of Potassium.                                                                                                                                                                                                                 |
| Calcium (ppm)            | 1764   | 1600      | Normal         | Adequate level.                                                                                                                                                                                                                                                                 |
| Sulphur (ppm)            | 12     | 15        | Slightly Low   | CONSIDER TREATMENT.                                                                                                                                                                                                                                                             |
| Boron (ppm)              | 0.99   | 1.60      | Low            | Consider treatment with boron.                                                                                                                                                                                                                                                  |
| Copper (ppm)             | 4.6    | 4.1       | Normal         | Adequate level.                                                                                                                                                                                                                                                                 |
| Iron (ppm)               | 624    | 50        | Normal         | Adequate level.                                                                                                                                                                                                                                                                 |
| Manganese (ppm)          | 77     | 75        | Normal         | Adequate level.                                                                                                                                                                                                                                                                 |
| Molybdenum (ppm)         | 0.02   | 0.30      | Very Low       | Low priority on this crop. Other crops may be affected.                                                                                                                                                                                                                         |
| Sodium (ppm)             | 28     | 90        | Very Low       | Not a problem for this crop.                                                                                                                                                                                                                                                    |
| Zinc (ppm)               | 8.1    | 4.1       | Normal         | Adequate level.                                                                                                                                                                                                                                                                 |
| C.E.C. (meq/100g)        | 12.3   | 15.0      | Slightly Low   | Cation Exchange Capacity indicates a slightly low nutrient holding ability - soil applied nutrients could be readily leached. Where possible foliar applied nutrients should be recommended.                                                                                    |
| Organic Matter (LOI) (%) | 3.8    | 3.0       | Normal         | Good. Soils with medium to high levels of organic matter would generally be expected to have a good potential fertility and good structure, moisture retention and water infiltration. Ensure appropriate soil management practices are used to maintain organic matter levels. |


8

P STEPHENSON MR P STEPHENSON Distributor Customer

16/07/2024 ( Date Issued: 19/07/2024 ) Sample Ref CARNOUSTIE D SUB **Date Received** 

G093428/08 / CARNOUSTIE Sample No Area

Crop WHEAT



| Biological Analysis                                  | $\mathcal{S}$ olvita $^{\circ}$ |       |
|------------------------------------------------------|---------------------------------|-------|
| Analysis                                             | Result                          | Ideal |
| Solvita Burst CO2-C (ppm)                            | N/A                             | >70   |
| Organic Carbon (%)                                   | N/A                             |       |
| Total Nitrogen (%)                                   | N/A                             |       |
| C:N Ratio                                            | N/A                             | 10-12 |
| Calculated Parameters                                | Result                          |       |
| Microbial Biomass (mg/kg)                            | N/A                             |       |
| Solvita Potentially Mineralizable Nitrogen (kg N/ha) | N/A                             |       |
| Soil Assessment Score                                | N/A/100                         |       |

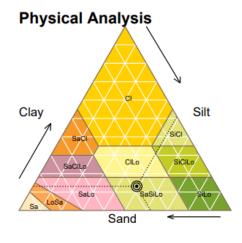
## Analysis Results (SOIL)

P STEPHENSON Customer

ARABLE ADVISOR 74 MIDDLETON RD PICKERING

CARNOUSTIE D SUB Sample Ref

G093428A/08 / CARNOUSTIE Sample No Crop


Distributor

MR P STEPHENSON SWAINSEA HOUSE 74 MIDDLETON ROAD PICKERING NORTH YORKSHIRE

YO18 8NH

16/07/2024 ( Date Issued: 19/07/2024 ) **Date Received** 

Area



| Analysis         | Result (%)      |
|------------------|-----------------|
| Sand             | 37.93           |
| Silt             | 48.94           |
| Clay             | 13.13           |
| Very Fine Sand   | 15.41           |
| Fine Sand        | 13.49           |
| Medium Sand      | 8.24            |
| Coarse Sand      | 0.79            |
| Very Coarse Sand | < 0.01          |
| Stones >2mm      | 15.10           |
| Soil Type        | SaSiLo          |
|                  | Sandy Silt Loam |

| Property           | Assessment       |
|--------------------|------------------|
| Available Water    | Low to Medium    |
| Drainage Rate      | Rapid            |
| Inherent Fertility | Low to Medium    |
| Potential C.E.C.   | Low to Medium    |
| Leaching Risk      | High to Moderate |
| Warming Rate       | Rapid            |

#### Pit E Topsoil

# Analysis Results (SOIL)

Customer P STEPHENSON

ARABLE ADVISOR 74 MIDDLETON RD

PICKERING YO18 8NH

Distributor MR P STEPHENSON

SWAINSEA HOUSE 74 MIDDLETON ROAD

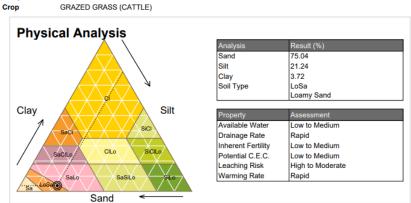
PICKERING NORTH YORKSHIRE YO18 8NH

Sample Ref CARNOUSTIE E TOP Date Received 16/07/2024 ( Date Issued: 19/07/2024 )

Sample No G093428/09 / CARNOUSTIE 8 Area

GRAZED GRASS (CATTLE) Crop

| Analysis                 | Result | Guideline | Interpretation | Comments                                                                                                                                                                                                                                                                        |
|--------------------------|--------|-----------|----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| рН                       | 5.8    | 6.0       | Slightly Low   | Slightly low. An acidic environment will reduce soil nutrient availability and the efficiency of any applied fertilisers or organic materials.  A sub optimum pH will also impact on soil microbial populations and rates of activity.  Refer to lime requirement.              |
| Lime Req. (t/ha)         | 2.0    |           |                |                                                                                                                                                                                                                                                                                 |
| Phosphorus (ppm)         | 40     | 16        | High           | (Index 3) Adequate level.                                                                                                                                                                                                                                                       |
| Potassium (ppm)          | 492    | 121       | Very High      | (Index 4) Possible interference on availability of Magnesium.                                                                                                                                                                                                                   |
| Magnesium (ppm)          | 247    | 51        | Very High      | (Index 4) Possible interference with availability of Potassium.                                                                                                                                                                                                                 |
| Calcium (ppm)            | 1379   | 2000      | Low            | Below optimum level. If pH low, and Mg adequate, consider using calcium liming material.                                                                                                                                                                                        |
| Sulphur (ppm)            | 11     | 10        | Normal         | Adequate level.                                                                                                                                                                                                                                                                 |
| Boron (ppm)              | 1.15   | 0.50      | Normal         | Adequate level.                                                                                                                                                                                                                                                                 |
| Copper (ppm)             | 5.0    | 8.0       | Low            | PRIORITY FOR LIVESTOCK HEALTH.                                                                                                                                                                                                                                                  |
| Iron (ppm)               | 1062   | 50        | Normal         | Adequate level.                                                                                                                                                                                                                                                                 |
| Manganese (ppm)          | 28     | 10        | Normal         | Adequate level.                                                                                                                                                                                                                                                                 |
| Molybdenum (ppm)         | 0.04   | <0.5      | Normal         | No problems anticipated.                                                                                                                                                                                                                                                        |
| Sodium (ppm)             | 35     | 90        | Very Low       | PRIORITY FOR LIVESTOCK HEALTH.                                                                                                                                                                                                                                                  |
| Zinc (ppm)               | 23.7   | 7.0       | High           | Possible interference with availability of Iron.                                                                                                                                                                                                                                |
| C.E.C. (meq/100g)        | 13.8   | 15.0      | Slightly Low   | Cation Exchange Capacity indicates a slightly low nutrient holding ability - soil applied nutrients could be readily leached. Where possible foliar applied nutrients should be recommended.                                                                                    |
| Organic Matter (LOI) (%) | 9.3    | 3.0       | High           | High. Soils with medium to high levels of organic matter would generally be expected to have a good potential fertility and good structure, moisture retention and water infiltration. Ensure appropriate soil management practices are used to maintain organic matter levels. |


P STEPHENSON Customer CARNOUSTIE E TOP Sample Ref Sample No

G093428/09 / CARNOUSTIE GRAZED GRASS (CATTLE)

Distributor MR P STEPHENSON

Date Received 16/07/2024 ( Date Issued: 19/07/2024 )

Area



| Biological Analysis                                  | $\mathcal{S}$ olvita $^{\circ}$ |       |
|------------------------------------------------------|---------------------------------|-------|
| Analysis                                             | Result                          | Ideal |
| Solvita Burst CO2-C (ppm)                            | N/A                             | >70   |
| Organic Carbon (%)                                   | N/A                             |       |
| Total Nitrogen (%)                                   | N/A                             |       |
| C:N Ratio                                            | N/A                             | 10-12 |
| Calculated Parameters                                | Result                          |       |
| Microbial Biomass (mg/kg)                            | N/A                             |       |
| Solvita Potentially Mineralizable Nitrogen (kg N/ha) | N/A                             |       |
| Soil Assessment Score                                | N/A/100                         |       |

#### Analysis Results (SOIL)

Customer

P STEPHENSON ARABLE ADVISOR 74 MIDDLETON RD PICKERING YO18 8NH

Sample Ref Sample No

Crop

CARNOUSTIE E TOP G093428A/09 / CARNOUSTIE Distributor

MR P STEPHENSON SWAINSEA HOUSE 74 MIDDLETON ROAD PICKERING NORTH YORKSHIRE YO18 8NH

16/07/2024 ( Date Issued: 19/07/2024 ) **Date Received** 

Area



| Analysis         | Result (%) |
|------------------|------------|
| Sand             | 75.04      |
| Silt             | 21.24      |
| Clay             | 3.72       |
| Very Fine Sand   | 16.33      |
| Fine Sand        | 29.82      |
| Medium Sand      | 20.54      |
| Coarse Sand      | 8.00       |
| Very Coarse Sand | 0.36       |
| Stones >2mm      | 11.70      |
| Soil Type        | LoSa       |
|                  | Loamy Sand |

| Property           | Assessment       |
|--------------------|------------------|
| Available Water    | Low to Medium    |
| Drainage Rate      | Rapid            |
| Inherent Fertility | Low to Medium    |
| Potential C.E.C.   | Low to Medium    |
| Leaching Risk      | High to Moderate |
| Warming Rate       | Rapid            |